HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvaddid-zf Unicode version

Theorem axhvaddid-zf 21566
Description: Derive axiom ax-hvaddid 21584 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhvaddid-zf  |-  ( A  e.  ~H  ->  ( A  +h  0h )  =  A )

Proof of Theorem axhvaddid-zf
StepHypRef Expression
1 axhil.2 . 2  |-  U  e. 
CHil OLD
2 df-hba 21549 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
3 axhil.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
43fveq2i 5528 . . . 4  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
52, 4eqtr4i 2306 . . 3  |-  ~H  =  ( BaseSet `  U )
61hlnvi 21471 . . . 4  |-  U  e.  NrmCVec
73, 6h2hva 21554 . . 3  |-  +h  =  ( +v `  U )
8 df-h0v 21550 . . . 4  |-  0h  =  ( 0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
93fveq2i 5528 . . . 4  |-  ( 0vec `  U )  =  (
0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
108, 9eqtr4i 2306 . . 3  |-  0h  =  ( 0vec `  U )
115, 7, 10hladdid 21482 . 2  |-  ( ( U  e.  CHil OLD  /\  A  e.  ~H )  ->  ( A  +h  0h )  =  A )
121, 11mpan 651 1  |-  ( A  e.  ~H  ->  ( A  +h  0h )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   <.cop 3643   ` cfv 5255  (class class class)co 5858   BaseSetcba 21142   0veccn0v 21144   CHil
OLDchlo 21464   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503   0hc0v 21504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-cbn 21442  df-hlo 21465  df-hba 21549  df-h0v 21550
  Copyright terms: Public domain W3C validator