HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvass-zf Structured version   Unicode version

Theorem axhvass-zf 22488
Description: Derive axiom ax-hvass 22506 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhvass-zf  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( A  +h  ( B  +h  C
) ) )

Proof of Theorem axhvass-zf
StepHypRef Expression
1 axhil.2 . 2  |-  U  e. 
CHil OLD
2 df-hba 22473 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
3 axhil.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
43fveq2i 5732 . . . 4  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
52, 4eqtr4i 2460 . . 3  |-  ~H  =  ( BaseSet `  U )
61hlnvi 22395 . . . 4  |-  U  e.  NrmCVec
73, 6h2hva 22478 . . 3  |-  +h  =  ( +v `  U )
85, 7hlass 22404 . 2  |-  ( ( U  e.  CHil OLD  /\  ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )
)  ->  ( ( A  +h  B )  +h  C )  =  ( A  +h  ( B  +h  C ) ) )
91, 8mpan 653 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( A  +h  ( B  +h  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   <.cop 3818   ` cfv 5455  (class class class)co 6082   BaseSetcba 22066   CHil
OLDchlo 22388   ~Hchil 22423    +h cva 22424    .h csm 22425   normhcno 22427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-1st 6350  df-2nd 6351  df-grpo 21780  df-ablo 21871  df-vc 22026  df-nv 22072  df-va 22075  df-ba 22076  df-sm 22077  df-0v 22078  df-nmcv 22080  df-cbn 22366  df-hlo 22389  df-hba 22473
  Copyright terms: Public domain W3C validator