HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvcom-zf Unicode version

Theorem axhvcom-zf 22447
Description: Derive axiom ax-hvcom 22465 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
axhil.2  |-  U  e. 
CHil OLD
Assertion
Ref Expression
axhvcom-zf  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  =  ( B  +h  A ) )

Proof of Theorem axhvcom-zf
StepHypRef Expression
1 axhil.2 . 2  |-  U  e. 
CHil OLD
2 df-hba 22433 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
3 axhil.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
43fveq2i 5698 . . . 4  |-  ( BaseSet `  U )  =  (
BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
52, 4eqtr4i 2435 . . 3  |-  ~H  =  ( BaseSet `  U )
61hlnvi 22355 . . . 4  |-  U  e.  NrmCVec
73, 6h2hva 22438 . . 3  |-  +h  =  ( +v `  U )
85, 7hlcom 22363 . 2  |-  ( ( U  e.  CHil OLD  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  =  ( B  +h  A ) )
91, 8mp3an1 1266 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  =  ( B  +h  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3785   ` cfv 5421  (class class class)co 6048   BaseSetcba 22026   CHil
OLDchlo 22348   ~Hchil 22383    +h cva 22384    .h csm 22385   normhcno 22387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-1st 6316  df-2nd 6317  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-nmcv 22040  df-cbn 22326  df-hlo 22349  df-hba 22433
  Copyright terms: Public domain W3C validator