MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Unicode version

Theorem axinf2 7528
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 7526 and Regularity ax-reg 7493.

This theorem should not be referenced in any proof. Instead, use ax-inf2 7529 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Distinct variable group:    x, y, z, w

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 4804 . . 3  |-  (/)  e.  om
2 peano2 4805 . . . 4  |-  ( y  e.  om  ->  suc  y  e.  om )
32ax-gen 1552 . . 3  |-  A. y
( y  e.  om  ->  suc  y  e.  om )
4 zfinf 7527 . . . . . 6  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
54inf2 7511 . . . . 5  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
65inf3 7523 . . . 4  |-  om  e.  _V
7 eleq2 2448 . . . . 5  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
8 eleq2 2448 . . . . . . 7  |-  ( x  =  om  ->  (
y  e.  x  <->  y  e.  om ) )
9 eleq2 2448 . . . . . . 7  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
108, 9imbi12d 312 . . . . . 6  |-  ( x  =  om  ->  (
( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e. 
om  ->  suc  y  e.  om ) ) )
1110albidv 1632 . . . . 5  |-  ( x  =  om  ->  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  om  ->  suc  y  e.  om ) ) )
127, 11anbi12d 692 . . . 4  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( (/)  e.  om  /\ 
A. y ( y  e.  om  ->  suc  y  e.  om )
) ) )
136, 12spcev 2986 . . 3  |-  ( (
(/)  e.  om  /\  A. y ( y  e. 
om  ->  suc  y  e.  om ) )  ->  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) ) )
141, 3, 13mp2an 654 . 2  |-  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )
15 0el 3587 . . . . 5  |-  ( (/)  e.  x  <->  E. y  e.  x  A. z  -.  z  e.  y )
16 df-rex 2655 . . . . 5  |-  ( E. y  e.  x  A. z  -.  z  e.  y  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y
) )
1715, 16bitri 241 . . . 4  |-  ( (/)  e.  x  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y ) )
18 sucel 4595 . . . . . . 7  |-  ( suc  y  e.  x  <->  E. z  e.  x  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) ) )
19 df-rex 2655 . . . . . . 7  |-  ( E. z  e.  x  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) )  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2018, 19bitri 241 . . . . . 6  |-  ( suc  y  e.  x  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2120imbi2i 304 . . . . 5  |-  ( ( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2221albii 1572 . . . 4  |-  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2317, 22anbi12i 679 . . 3  |-  ( (
(/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2423exbii 1589 . 2  |-  ( E. x ( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x )
)  <->  E. x ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2514, 24mpbi 200 1  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2650   (/)c0 3571   suc csuc 4524   omcom 4785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-reg 7493  ax-inf 7526
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604
  Copyright terms: Public domain W3C validator