MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Unicode version

Theorem axinf2 7357
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 7355 and Regularity ax-reg 7322.

This theorem should not be referenced in any proof. Instead, use ax-inf2 7358 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Distinct variable group:    x, y, z, w

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 4691 . . 3  |-  (/)  e.  om
2 peano2 4692 . . . 4  |-  ( y  e.  om  ->  suc  y  e.  om )
32ax-gen 1536 . . 3  |-  A. y
( y  e.  om  ->  suc  y  e.  om )
4 zfinf 7356 . . . . . 6  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
54inf2 7340 . . . . 5  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
65inf3 7352 . . . 4  |-  om  e.  _V
7 eleq2 2357 . . . . 5  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
8 eleq2 2357 . . . . . . 7  |-  ( x  =  om  ->  (
y  e.  x  <->  y  e.  om ) )
9 eleq2 2357 . . . . . . 7  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
108, 9imbi12d 311 . . . . . 6  |-  ( x  =  om  ->  (
( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e. 
om  ->  suc  y  e.  om ) ) )
1110albidv 1615 . . . . 5  |-  ( x  =  om  ->  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  om  ->  suc  y  e.  om ) ) )
127, 11anbi12d 691 . . . 4  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( (/)  e.  om  /\ 
A. y ( y  e.  om  ->  suc  y  e.  om )
) ) )
136, 12spcev 2888 . . 3  |-  ( (
(/)  e.  om  /\  A. y ( y  e. 
om  ->  suc  y  e.  om ) )  ->  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) ) )
141, 3, 13mp2an 653 . 2  |-  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )
15 0el 3484 . . . . 5  |-  ( (/)  e.  x  <->  E. y  e.  x  A. z  -.  z  e.  y )
16 df-rex 2562 . . . . 5  |-  ( E. y  e.  x  A. z  -.  z  e.  y  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y
) )
1715, 16bitri 240 . . . 4  |-  ( (/)  e.  x  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y ) )
18 sucel 4481 . . . . . . 7  |-  ( suc  y  e.  x  <->  E. z  e.  x  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) ) )
19 df-rex 2562 . . . . . . 7  |-  ( E. z  e.  x  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) )  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2018, 19bitri 240 . . . . . 6  |-  ( suc  y  e.  x  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2120imbi2i 303 . . . . 5  |-  ( ( y  e.  x  ->  suc  y  e.  x
)  <->  ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2221albii 1556 . . . 4  |-  ( A. y ( y  e.  x  ->  suc  y  e.  x )  <->  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2317, 22anbi12i 678 . . 3  |-  ( (
(/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )  <->  ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2423exbii 1572 . 2  |-  ( E. x ( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x )
)  <->  E. x ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
2514, 24mpbi 199 1  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   (/)c0 3468   suc csuc 4410   omcom 4672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf 7355
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator