Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem1 Unicode version

Theorem axlowdimlem1 24570
Description: Lemma for axlowdim 24589. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
axlowdimlem1  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR

Proof of Theorem axlowdimlem1
StepHypRef Expression
1 0re 8838 . 2  |-  0  e.  RR
21fconst6 5431 1  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR
Colors of variables: wff set class
Syntax hints:   {csn 3640    X. cxp 4687   -->wf 5251  (class class class)co 5858   RRcr 8736   0cc0 8737   3c3 9796   ...cfz 10782
This theorem is referenced by:  axlowdimlem5  24574  axlowdimlem6  24575  axlowdimlem17  24586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator