Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem1 Unicode version

Theorem axlowdimlem1 25129
Description: Lemma for axlowdim 25148. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
axlowdimlem1  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR

Proof of Theorem axlowdimlem1
StepHypRef Expression
1 0re 8928 . 2  |-  0  e.  RR
21fconst6 5514 1  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR
Colors of variables: wff set class
Syntax hints:   {csn 3716    X. cxp 4769   -->wf 5333  (class class class)co 5945   RRcr 8826   0cc0 8827   3c3 9886   ...cfz 10874
This theorem is referenced by:  axlowdimlem5  25133  axlowdimlem6  25134  axlowdimlem17  25145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-i2m1 8895  ax-1ne0 8896  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-fv 5345  df-ov 5948
  Copyright terms: Public domain W3C validator