Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem10 Structured version   Unicode version

Theorem axlowdimlem10 25882
Description: Lemma for axlowdim 25892. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem10  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )

Proof of Theorem axlowdimlem10
StepHypRef Expression
1 ovex 6098 . . . . . . . . 9  |-  ( I  +  1 )  e. 
_V
2 1ex 9078 . . . . . . . . 9  |-  1  e.  _V
31, 2f1osn 5707 . . . . . . . 8  |-  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } -1-1-onto-> { 1 }
4 f1of 5666 . . . . . . . 8  |-  ( {
<. ( I  +  1 ) ,  1 >. } : { ( I  +  1 ) } -1-1-onto-> { 1 }  ->  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 } )
53, 4ax-mp 8 . . . . . . 7  |-  { <. ( I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 }
6 c0ex 9077 . . . . . . . 8  |-  0  e.  _V
76fconst 5621 . . . . . . 7  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
85, 7pm3.2i 442 . . . . . 6  |-  ( {
<. ( I  +  1 ) ,  1 >. } : { ( I  +  1 ) } --> { 1 }  /\  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) : ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) --> { 0 } )
9 disjdif 3692 . . . . . 6  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
10 fun 5599 . . . . . 6  |-  ( ( ( { <. (
I  +  1 ) ,  1 >. } : { ( I  + 
1 ) } --> { 1 }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 } )  /\  ( { ( I  + 
1 ) }  i^i  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  =  (/) )  ->  ( { <. ( I  + 
1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } ) )
118, 9, 10mp2an 654 . . . . 5  |-  ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } )
12 axlowdimlem10.1 . . . . . 6  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
1312feq1i 5577 . . . . 5  |-  ( Q : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } )  <->  ( { <. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) : ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) --> ( { 1 }  u.  {
0 } ) )
1411, 13mpbir 201 . . . 4  |-  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> ( { 1 }  u.  { 0 } )
15 1re 9082 . . . . . 6  |-  1  e.  RR
16 snssi 3934 . . . . . 6  |-  ( 1  e.  RR  ->  { 1 }  C_  RR )
1715, 16ax-mp 8 . . . . 5  |-  { 1 }  C_  RR
18 0re 9083 . . . . . 6  |-  0  e.  RR
19 snssi 3934 . . . . . 6  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
2018, 19ax-mp 8 . . . . 5  |-  { 0 }  C_  RR
2117, 20unssi 3514 . . . 4  |-  ( { 1 }  u.  {
0 } )  C_  RR
22 fss 5591 . . . 4  |-  ( ( Q : ( { ( I  +  1 ) }  u.  (
( 1 ... N
)  \  { (
I  +  1 ) } ) ) --> ( { 1 }  u.  { 0 } )  /\  ( { 1 }  u.  { 0 } )  C_  RR )  ->  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR )
2314, 21, 22mp2an 654 . . 3  |-  Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR
24 fznatpl1 25190 . . . . . 6  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
2524snssd 3935 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  { ( I  +  1 ) } 
C_  ( 1 ... N ) )
26 undif 3700 . . . . 5  |-  ( { ( I  +  1 ) }  C_  (
1 ... N )  <->  ( {
( I  +  1 ) }  u.  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  ( 1 ... N
) )
2725, 26sylib 189 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { ( I  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  ( 1 ... N ) )
2827feq2d 5573 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q :
( { ( I  +  1 ) }  u.  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) ) --> RR  <->  Q :
( 1 ... N
) --> RR ) )
2923, 28mpbii 203 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q : ( 1 ... N ) --> RR )
30 elee 25825 . . 3  |-  ( N  e.  NN  ->  ( Q  e.  ( EE `  N )  <->  Q :
( 1 ... N
) --> RR ) )
3130adantr 452 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  e.  ( EE `  N
)  <->  Q : ( 1 ... N ) --> RR ) )
3229, 31mpbird 224 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   <.cop 3809    X. cxp 4868   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    - cmin 9283   NNcn 9992   ...cfz 11035   EEcee 25819
This theorem is referenced by:  axlowdimlem14  25886  axlowdimlem15  25887  axlowdimlem16  25888  axlowdimlem17  25889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-ee 25822
  Copyright terms: Public domain W3C validator