Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem11 Structured version   Unicode version

Theorem axlowdimlem11 25883
Description: Lemma for axlowdim 25892. Calculate the value of  Q at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem11  |-  ( Q `
 ( I  + 
1 ) )  =  1

Proof of Theorem axlowdimlem11
StepHypRef Expression
1 axlowdimlem10.1 . . 3  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
21fveq1i 5721 . 2  |-  ( Q `
 ( I  + 
1 ) )  =  ( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  (
I  +  1 ) )
3 ovex 6098 . . . 4  |-  ( I  +  1 )  e. 
_V
4 1ex 9078 . . . 4  |-  1  e.  _V
53, 4fnsn 5496 . . 3  |-  { <. ( I  +  1 ) ,  1 >. }  Fn  { ( I  +  1 ) }
6 c0ex 9077 . . . . 5  |-  0  e.  _V
76fconst 5621 . . . 4  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
8 ffn 5583 . . . 4  |-  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { ( I  + 
1 ) } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )
97, 8ax-mp 8 . . 3  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )
10 disjdif 3692 . . . 4  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
113snid 3833 . . . 4  |-  ( I  +  1 )  e. 
{ ( I  + 
1 ) }
1210, 11pm3.2i 442 . . 3  |-  ( ( { ( I  + 
1 ) }  i^i  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  =  (/)  /\  (
I  +  1 )  e.  { ( I  +  1 ) } )
13 fvun1 5786 . . 3  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  Fn  { ( I  +  1 ) }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )  /\  ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  (/)  /\  ( I  +  1 )  e.  { ( I  +  1 ) } ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  (
I  +  1 ) )  =  ( {
<. ( I  +  1 ) ,  1 >. } `  ( I  +  1 ) ) )
145, 9, 12, 13mp3an 1279 . 2  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 ( I  + 
1 ) )  =  ( { <. (
I  +  1 ) ,  1 >. } `  ( I  +  1
) )
153, 4fvsn 5918 . 2  |-  ( {
<. ( I  +  1 ) ,  1 >. } `  ( I  +  1 ) )  =  1
162, 14, 153eqtri 2459 1  |-  ( Q `
 ( I  + 
1 ) )  =  1
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309    u. cun 3310    i^i cin 3311   (/)c0 3620   {csn 3806   <.cop 3809    X. cxp 4868    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    + caddc 8985   ...cfz 11035
This theorem is referenced by:  axlowdimlem14  25886  axlowdimlem16  25888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-mulcl 9044  ax-i2m1 9050
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator