Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem11 Unicode version

Theorem axlowdimlem11 24652
Description: Lemma for axlowdim 24661. Calculate the value of  Q at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem11  |-  ( Q `
 ( I  + 
1 ) )  =  1

Proof of Theorem axlowdimlem11
StepHypRef Expression
1 axlowdimlem10.1 . . 3  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
21fveq1i 5542 . 2  |-  ( Q `
 ( I  + 
1 ) )  =  ( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  (
I  +  1 ) )
3 ovex 5899 . . . 4  |-  ( I  +  1 )  e. 
_V
4 1ex 8849 . . . 4  |-  1  e.  _V
53, 4fnsn 5320 . . 3  |-  { <. ( I  +  1 ) ,  1 >. }  Fn  { ( I  +  1 ) }
6 c0ex 8848 . . . . 5  |-  0  e.  _V
76fconst 5443 . . . 4  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
8 ffn 5405 . . . 4  |-  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { ( I  + 
1 ) } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )
97, 8ax-mp 8 . . 3  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )
10 disjdif 3539 . . . 4  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
113snid 3680 . . . 4  |-  ( I  +  1 )  e. 
{ ( I  + 
1 ) }
1210, 11pm3.2i 441 . . 3  |-  ( ( { ( I  + 
1 ) }  i^i  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  =  (/)  /\  (
I  +  1 )  e.  { ( I  +  1 ) } )
13 fvun1 5606 . . 3  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  Fn  { ( I  +  1 ) }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )  /\  ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  (/)  /\  ( I  +  1 )  e.  { ( I  +  1 ) } ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  (
I  +  1 ) )  =  ( {
<. ( I  +  1 ) ,  1 >. } `  ( I  +  1 ) ) )
145, 9, 12, 13mp3an 1277 . 2  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 ( I  + 
1 ) )  =  ( { <. (
I  +  1 ) ,  1 >. } `  ( I  +  1
) )
153, 4fvsn 5729 . 2  |-  ( {
<. ( I  +  1 ) ,  1 >. } `  ( I  +  1 ) )  =  1
162, 14, 153eqtri 2320 1  |-  ( Q `
 ( I  + 
1 ) )  =  1
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162    u. cun 3163    i^i cin 3164   (/)c0 3468   {csn 3653   <.cop 3656    X. cxp 4703    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    + caddc 8756   ...cfz 10798
This theorem is referenced by:  axlowdimlem14  24655  axlowdimlem16  24657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-mulcl 8815  ax-i2m1 8821
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator