Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem12 Unicode version

Theorem axlowdimlem12 24581
Description: Lemma for axlowdim 24589. Calculate the value of  Q away from its distunguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem12  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( Q `  K
)  =  0 )

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
21fveq1i 5526 . 2  |-  ( Q `
 K )  =  ( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)
3 eldifsn 3749 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  <-> 
( K  e.  ( 1 ... N )  /\  K  =/=  (
I  +  1 ) ) )
4 disjdif 3526 . . . . 5  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
5 ovex 5883 . . . . . . 7  |-  ( I  +  1 )  e. 
_V
6 1ex 8833 . . . . . . 7  |-  1  e.  _V
75, 6fnsn 5304 . . . . . 6  |-  { <. ( I  +  1 ) ,  1 >. }  Fn  { ( I  +  1 ) }
8 c0ex 8832 . . . . . . . 8  |-  0  e.  _V
98fconst 5427 . . . . . . 7  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
10 ffn 5389 . . . . . . 7  |-  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { ( I  + 
1 ) } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )
119, 10ax-mp 8 . . . . . 6  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )
12 fvun2 5591 . . . . . 6  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  Fn  { ( I  +  1 ) }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )  /\  ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  (/)  /\  K  e.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)  =  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) `
 K ) )
137, 11, 12mp3an12 1267 . . . . 5  |-  ( ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )  =  (/)  /\  K  e.  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  ( ( ( ( 1 ... N ) 
\  { ( I  +  1 ) } )  X.  { 0 } ) `  K
) )
144, 13mpan 651 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  ( ( ( ( 1 ... N ) 
\  { ( I  +  1 ) } )  X.  { 0 } ) `  K
) )
158fvconst2 5729 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) `  K )  =  0 )
1614, 15eqtrd 2315 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  0 )
173, 16sylbir 204 . 2  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)  =  0 )
182, 17syl5eq 2327 1  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( Q `  K
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   <.cop 3643    X. cxp 4687    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   ...cfz 10782
This theorem is referenced by:  axlowdimlem14  24583  axlowdimlem16  24585  axlowdimlem17  24586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-mulcl 8799  ax-i2m1 8805
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator