Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem15 Structured version   Unicode version

Theorem axlowdimlem15 25895
Description: Lemma for axlowdim 25900. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1  |-  F  =  ( i  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( i  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) ) )
Assertion
Ref Expression
axlowdimlem15  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) -1-1-> ( EE `  N ) )
Distinct variable group:    i, N
Allowed substitution hint:    F( i)

Proof of Theorem axlowdimlem15
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ifeqor 3776 . . . 4  |-  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )  \/  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )
2 eqid 2436 . . . . . . . 8  |-  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )
32axlowdimlem7 25887 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  e.  ( EE `  N ) )
43adantr 452 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  e.  ( EE
`  N ) )
5 eleq1 2496 . . . . . 6  |-  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )  ->  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  e.  ( EE `  N
)  <->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  e.  ( EE `  N ) ) )
64, 5syl5ibr 213 . . . . 5  |-  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )  ->  (
( N  e.  (
ZZ>= `  3 )  /\  i  e.  ( 1 ... ( N  - 
1 ) ) )  ->  if ( i  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) )  e.  ( EE
`  N ) ) )
7 3nn 10134 . . . . . . . . 9  |-  3  e.  NN
8 uznnssnn 10524 . . . . . . . . 9  |-  ( 3  e.  NN  ->  ( ZZ>=
`  3 )  C_  NN )
97, 8ax-mp 8 . . . . . . . 8  |-  ( ZZ>= ` 
3 )  C_  NN
109sseli 3344 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  NN )
11 eqid 2436 . . . . . . . 8  |-  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )
1211axlowdimlem10 25890 . . . . . . 7  |-  ( ( N  e.  NN  /\  i  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )  e.  ( EE `  N ) )
1310, 12sylan 458 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  e.  ( EE `  N ) )
14 eleq1 2496 . . . . . 6  |-  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )  ->  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  e.  ( EE `  N
)  <->  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )  e.  ( EE `  N ) ) )
1513, 14syl5ibr 213 . . . . 5  |-  ( if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) )  ->  (
( N  e.  (
ZZ>= `  3 )  /\  i  e.  ( 1 ... ( N  - 
1 ) ) )  ->  if ( i  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) )  e.  ( EE
`  N ) ) )
166, 15jaoi 369 . . . 4  |-  ( ( if ( i  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) )  =  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  \/  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) )  =  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) )  ->  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  e.  ( EE `  N
) ) )
171, 16ax-mp 8 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  i  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  e.  ( EE `  N
) )
18 axlowdimlem15.1 . . 3  |-  F  =  ( i  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( i  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( i  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) ) ) )
1917, 18fmptd 5893 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) --> ( EE `  N ) )
20 eqeq1 2442 . . . . . . . 8  |-  ( i  =  j  ->  (
i  =  1  <->  j  =  1 ) )
21 oveq1 6088 . . . . . . . . . . 11  |-  ( i  =  j  ->  (
i  +  1 )  =  ( j  +  1 ) )
2221opeq1d 3990 . . . . . . . . . 10  |-  ( i  =  j  ->  <. (
i  +  1 ) ,  1 >.  =  <. ( j  +  1 ) ,  1 >. )
2322sneqd 3827 . . . . . . . . 9  |-  ( i  =  j  ->  { <. ( i  +  1 ) ,  1 >. }  =  { <. ( j  +  1 ) ,  1
>. } )
2421sneqd 3827 . . . . . . . . . . 11  |-  ( i  =  j  ->  { ( i  +  1 ) }  =  { ( j  +  1 ) } )
2524difeq2d 3465 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( 1 ... N
)  \  { (
i  +  1 ) } )  =  ( ( 1 ... N
)  \  { (
j  +  1 ) } ) )
2625xpeq1d 4901 . . . . . . . . 9  |-  ( i  =  j  ->  (
( ( 1 ... N )  \  {
( i  +  1 ) } )  X. 
{ 0 } )  =  ( ( ( 1 ... N ) 
\  { ( j  +  1 ) } )  X.  { 0 } ) )
2723, 26uneq12d 3502 . . . . . . . 8  |-  ( i  =  j  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
2820, 27ifbieq2d 3759 . . . . . . 7  |-  ( i  =  j  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) ) )
29 snex 4405 . . . . . . . . 9  |-  { <. 3 ,  -u 1 >. }  e.  _V
30 ovex 6106 . . . . . . . . . . 11  |-  ( 1 ... N )  e. 
_V
31 difexg 4351 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { 3 } )  e.  _V )
3230, 31ax-mp 8 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { 3 } )  e.  _V
33 snex 4405 . . . . . . . . . 10  |-  { 0 }  e.  _V
3432, 33xpex 4990 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } )  e. 
_V
3529, 34unex 4707 . . . . . . . 8  |-  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  e.  _V
36 snex 4405 . . . . . . . . 9  |-  { <. ( j  +  1 ) ,  1 >. }  e.  _V
37 difexg 4351 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { (
j  +  1 ) } )  e.  _V )
3830, 37ax-mp 8 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { ( j  +  1 ) } )  e.  _V
3938, 33xpex 4990 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } )  e. 
_V
4036, 39unex 4707 . . . . . . . 8  |-  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  e.  _V
4135, 40ifex 3797 . . . . . . 7  |-  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  e.  _V
4228, 18, 41fvmpt 5806 . . . . . 6  |-  ( j  e.  ( 1 ... ( N  -  1 ) )  ->  ( F `  j )  =  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) ) )
43 eqeq1 2442 . . . . . . . 8  |-  ( i  =  k  ->  (
i  =  1  <->  k  =  1 ) )
44 oveq1 6088 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
i  +  1 )  =  ( k  +  1 ) )
4544opeq1d 3990 . . . . . . . . . 10  |-  ( i  =  k  ->  <. (
i  +  1 ) ,  1 >.  =  <. ( k  +  1 ) ,  1 >. )
4645sneqd 3827 . . . . . . . . 9  |-  ( i  =  k  ->  { <. ( i  +  1 ) ,  1 >. }  =  { <. ( k  +  1 ) ,  1
>. } )
4744sneqd 3827 . . . . . . . . . . 11  |-  ( i  =  k  ->  { ( i  +  1 ) }  =  { ( k  +  1 ) } )
4847difeq2d 3465 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( 1 ... N
)  \  { (
i  +  1 ) } )  =  ( ( 1 ... N
)  \  { (
k  +  1 ) } ) )
4948xpeq1d 4901 . . . . . . . . 9  |-  ( i  =  k  ->  (
( ( 1 ... N )  \  {
( i  +  1 ) } )  X. 
{ 0 } )  =  ( ( ( 1 ... N ) 
\  { ( k  +  1 ) } )  X.  { 0 } ) )
5046, 49uneq12d 3502 . . . . . . . 8  |-  ( i  =  k  ->  ( { <. ( i  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
i  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
5143, 50ifbieq2d 3759 . . . . . . 7  |-  ( i  =  k  ->  if ( i  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( i  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( i  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
52 snex 4405 . . . . . . . . 9  |-  { <. ( k  +  1 ) ,  1 >. }  e.  _V
53 difexg 4351 . . . . . . . . . . 11  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { (
k  +  1 ) } )  e.  _V )
5430, 53ax-mp 8 . . . . . . . . . 10  |-  ( ( 1 ... N ) 
\  { ( k  +  1 ) } )  e.  _V
5554, 33xpex 4990 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } )  e. 
_V
5652, 55unex 4707 . . . . . . . 8  |-  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  e.  _V
5735, 56ifex 3797 . . . . . . 7  |-  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  e.  _V
5851, 18, 57fvmpt 5806 . . . . . 6  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  ( F `  k )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
5942, 58eqeqan12d 2451 . . . . 5  |-  ( ( j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( F `
 j )  =  ( F `  k
)  <->  if ( j  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) ) )
6059adantl 453 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( F `  j )  =  ( F `  k )  <->  if (
j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) ) )
61 eqtr3 2455 . . . . . . 7  |-  ( ( j  =  1  /\  k  =  1 )  ->  j  =  k )
6261a1d 23 . . . . . 6  |-  ( ( j  =  1  /\  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) )
6362a1d 23 . . . . 5  |-  ( ( j  =  1  /\  k  =  1 )  ->  ( ( N  e.  ( ZZ>= `  3
)  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( if ( j  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
64 eqid 2436 . . . . . . . . . . 11  |-  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )
652, 64axlowdimlem13 25893 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =/=  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
6665neneqd 2617 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  -.  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
6766pm2.21d 100 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
6867adantrl 697 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  (
( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
6910, 68sylan 458 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
70 iftrue 3745 . . . . . . . 8  |-  ( j  =  1  ->  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) )
71 iffalse 3746 . . . . . . . 8  |-  ( -.  k  =  1  ->  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )
7270, 71eqeqan12d 2451 . . . . . . 7  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) ) )
7372imbi1d 309 . . . . . 6  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  =  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) ) )
7469, 73syl5ibr 213 . . . . 5  |-  ( ( j  =  1  /\ 
-.  k  =  1 )  ->  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
75 eqid 2436 . . . . . . . . . . . 12  |-  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )
762, 75axlowdimlem13 25893 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  =/=  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
7776necomd 2687 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =/=  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) )
7877neneqd 2617 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  -.  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) )
7978pm2.21d 100 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) )
8010, 79sylan 458 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  j  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) )  ->  j  =  k ) )
8180adantrr 698 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) )
82 iffalse 3746 . . . . . . . 8  |-  ( -.  j  =  1  ->  if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )
83 iftrue 3745 . . . . . . . 8  |-  ( k  =  1  ->  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) )
8482, 83eqeqan12d 2451 . . . . . . 7  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ) )
8584imbi1d 309 . . . . . 6  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) )  ->  j  =  k ) ) )
8681, 85syl5ibr 213 . . . . 5  |-  ( ( -.  j  =  1  /\  k  =  1 )  ->  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
8775, 64axlowdimlem14 25894 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) )
88873expb 1154 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  (
( { <. (
j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) )  ->  j  =  k ) )
8910, 88sylan 458 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) )
9082, 71eqeqan12d 2451 . . . . . . 7  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  <->  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) )  =  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) ) )
9190imbi1d 309 . . . . . 6  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  (
( if ( j  =  1 ,  ( { <. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( j  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) ) )  =  if ( k  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) ) ,  ( { <. ( k  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k )  <->  ( ( { <. ( j  +  1 ) ,  1
>. }  u.  ( ( ( 1 ... N
)  \  { (
j  +  1 ) } )  X.  {
0 } ) )  =  ( { <. ( k  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( k  +  1 ) } )  X.  { 0 } ) )  ->  j  =  k ) ) )
9289, 91syl5ibr 213 . . . . 5  |-  ( ( -.  j  =  1  /\  -.  k  =  1 )  ->  (
( N  e.  (
ZZ>= `  3 )  /\  ( j  e.  ( 1 ... ( N  -  1 ) )  /\  k  e.  ( 1 ... ( N  -  1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) ) )
9363, 74, 86, 924cases 916 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( if ( j  =  1 ,  ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) ,  ( { <. ( j  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( j  +  1 ) } )  X.  { 0 } ) ) )  =  if ( k  =  1 ,  ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) ,  ( {
<. ( k  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
k  +  1 ) } )  X.  {
0 } ) ) )  ->  j  =  k ) )
9460, 93sylbid 207 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  (
j  e.  ( 1 ... ( N  - 
1 ) )  /\  k  e.  ( 1 ... ( N  - 
1 ) ) ) )  ->  ( ( F `  j )  =  ( F `  k )  ->  j  =  k ) )
9594ralrimivva 2798 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  A. j  e.  ( 1 ... ( N  -  1 ) ) A. k  e.  ( 1 ... ( N  -  1 ) ) ( ( F `
 j )  =  ( F `  k
)  ->  j  =  k ) )
96 dff13 6004 . 2  |-  ( F : ( 1 ... ( N  -  1 ) ) -1-1-> ( EE
`  N )  <->  ( F : ( 1 ... ( N  -  1 ) ) --> ( EE
`  N )  /\  A. j  e.  ( 1 ... ( N  - 
1 ) ) A. k  e.  ( 1 ... ( N  - 
1 ) ) ( ( F `  j
)  =  ( F `
 k )  -> 
j  =  k ) ) )
9719, 95, 96sylanbrc 646 1  |-  ( N  e.  ( ZZ>= `  3
)  ->  F :
( 1 ... ( N  -  1 ) ) -1-1-> ( EE `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    \ cdif 3317    u. cun 3318    C_ wss 3320   ifcif 3739   {csn 3814   <.cop 3817    e. cmpt 4266    X. cxp 4876   -->wf 5450   -1-1->wf1 5451   ` cfv 5454  (class class class)co 6081   0cc0 8990   1c1 8991    + caddc 8993    - cmin 9291   -ucneg 9292   NNcn 10000   3c3 10050   ZZ>=cuz 10488   ...cfz 11043   EEcee 25827
This theorem is referenced by:  axlowdim  25900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-ee 25830
  Copyright terms: Public domain W3C validator