Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem17 Unicode version

Theorem axlowdimlem17 24586
Description: Lemma for axlowdim 24589. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
axlowdimlem16.2  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
axlowdimlem17.3  |-  A  =  ( { <. 1 ,  X >. ,  <. 2 ,  Y >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )
axlowdimlem17.4  |-  X  e.  RR
axlowdimlem17.5  |-  Y  e.  RR
Assertion
Ref Expression
axlowdimlem17  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  <. P ,  A >.Cgr <. Q ,  A >. )

Proof of Theorem axlowdimlem17
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 3nn 9878 . . . . . . . . . . . . . . 15  |-  3  e.  NN
21nnzi 10047 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
3 2re 9815 . . . . . . . . . . . . . . 15  |-  2  e.  RR
4 3re 9817 . . . . . . . . . . . . . . 15  |-  3  e.  RR
5 2lt3 9887 . . . . . . . . . . . . . . 15  |-  2  <  3
63, 4, 5ltleii 8941 . . . . . . . . . . . . . 14  |-  2  <_  3
7 2z 10054 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
87eluz1i 10237 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 3  e.  ZZ  /\  2  <_ 
3 ) )
92, 6, 8mpbir2an 886 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  2 )
10 uztrn 10244 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  3  e.  ( ZZ>= `  2 )
)  ->  N  e.  ( ZZ>= `  2 )
)
119, 10mpan2 652 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ( ZZ>= `  2 )
)
1211ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  N  e.  ( ZZ>= `  2 )
)
13 fzss2 10831 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1 ... 2 )  C_  ( 1 ... N
) )
1412, 13syl 15 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( 1 ... 2 )  C_  ( 1 ... N
) )
15 simpr 447 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  i  e.  ( 1 ... 2
) )
1614, 15sseldd 3181 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  i  e.  ( 1 ... N
) )
17 fznuz 10864 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... 2 )  ->  -.  i  e.  ( ZZ>= `  ( 2  +  1 ) ) )
1817adantl 452 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  -.  i  e.  ( ZZ>= `  ( 2  +  1 ) ) )
19 uzid 10242 . . . . . . . . . . . . . 14  |-  ( 3  e.  ZZ  ->  3  e.  ( ZZ>= `  3 )
)
202, 19ax-mp 8 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  3 )
21 df-3 9805 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
2221fveq2i 5528 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
3 )  =  (
ZZ>= `  ( 2  +  1 ) )
2320, 22eleqtri 2355 . . . . . . . . . . . 12  |-  3  e.  ( ZZ>= `  ( 2  +  1 ) )
24 eleq1 2343 . . . . . . . . . . . 12  |-  ( i  =  3  ->  (
i  e.  ( ZZ>= `  ( 2  +  1 ) )  <->  3  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
2523, 24mpbiri 224 . . . . . . . . . . 11  |-  ( i  =  3  ->  i  e.  ( ZZ>= `  ( 2  +  1 ) ) )
2625necon3bi 2487 . . . . . . . . . 10  |-  ( -.  i  e.  ( ZZ>= `  ( 2  +  1 ) )  ->  i  =/=  3 )
2718, 26syl 15 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  i  =/=  3 )
28 axlowdimlem16.1 . . . . . . . . . 10  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
2928axlowdimlem9 24578 . . . . . . . . 9  |-  ( ( i  e.  ( 1 ... N )  /\  i  =/=  3 )  -> 
( P `  i
)  =  0 )
3016, 27, 29syl2anc 642 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( P `  i )  =  0 )
31 elfzuz 10794 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 2 ... ( N  -  1 ) )  ->  I  e.  ( ZZ>= `  2 )
)
3231ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  I  e.  ( ZZ>= `  2 )
)
33 eluzp1p1 10253 . . . . . . . . . . . . . 14  |-  ( I  e.  ( ZZ>= `  2
)  ->  ( I  +  1 )  e.  ( ZZ>= `  ( 2  +  1 ) ) )
3432, 33syl 15 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( I  +  1 )  e.  ( ZZ>= `  ( 2  +  1 ) ) )
35 uzss 10248 . . . . . . . . . . . . 13  |-  ( ( I  +  1 )  e.  ( ZZ>= `  (
2  +  1 ) )  ->  ( ZZ>= `  ( I  +  1
) )  C_  ( ZZ>=
`  ( 2  +  1 ) ) )
3634, 35syl 15 . . . . . . . . . . . 12  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( ZZ>= `  ( I  +  1
) )  C_  ( ZZ>=
`  ( 2  +  1 ) ) )
3736sseld 3179 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( i  e.  ( ZZ>= `  ( I  +  1 ) )  ->  i  e.  (
ZZ>= `  ( 2  +  1 ) ) ) )
3818, 37mtod 168 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  -.  i  e.  ( ZZ>= `  ( I  +  1 ) ) )
39 eluzelz 10238 . . . . . . . . . . . . . 14  |-  ( ( I  +  1 )  e.  ( ZZ>= `  (
2  +  1 ) )  ->  ( I  +  1 )  e.  ZZ )
4034, 39syl 15 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( I  +  1 )  e.  ZZ )
41 uzid 10242 . . . . . . . . . . . . 13  |-  ( ( I  +  1 )  e.  ZZ  ->  (
I  +  1 )  e.  ( ZZ>= `  (
I  +  1 ) ) )
4240, 41syl 15 . . . . . . . . . . . 12  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( I  +  1 )  e.  ( ZZ>= `  ( I  +  1 ) ) )
43 eleq1 2343 . . . . . . . . . . . 12  |-  ( i  =  ( I  + 
1 )  ->  (
i  e.  ( ZZ>= `  ( I  +  1
) )  <->  ( I  +  1 )  e.  ( ZZ>= `  ( I  +  1 ) ) ) )
4442, 43syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( i  =  ( I  + 
1 )  ->  i  e.  ( ZZ>= `  ( I  +  1 ) ) ) )
4544necon3bd 2483 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( -.  i  e.  ( ZZ>= `  ( I  +  1
) )  ->  i  =/=  ( I  +  1 ) ) )
4638, 45mpd 14 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  i  =/=  ( I  +  1
) )
47 axlowdimlem16.2 . . . . . . . . . 10  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
4847axlowdimlem12 24581 . . . . . . . . 9  |-  ( ( i  e.  ( 1 ... N )  /\  i  =/=  ( I  + 
1 ) )  -> 
( Q `  i
)  =  0 )
4916, 46, 48syl2anc 642 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( Q `  i )  =  0 )
5030, 49eqtr4d 2318 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( P `  i )  =  ( Q `  i ) )
5150oveq1d 5873 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( ( P `  i )  -  ( A `  i ) )  =  ( ( Q `  i )  -  ( A `  i )
) )
5251oveq1d 5873 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... 2 ) )  ->  ( (
( P `  i
)  -  ( A `
 i ) ) ^ 2 )  =  ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 ) )
5352sumeq2dv 12176 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 1 ... 2
) ( ( ( P `  i )  -  ( A `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... 2 ) ( ( ( Q `  i )  -  ( A `  i )
) ^ 2 ) )
5428, 47axlowdimlem16 24585 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 3 ... N
) ( ( P `
 i ) ^
2 )  =  sum_ i  e.  ( 3 ... N ) ( ( Q `  i
) ^ 2 ) )
55 axlowdimlem17.3 . . . . . . . . . . . . 13  |-  A  =  ( { <. 1 ,  X >. ,  <. 2 ,  Y >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )
5655fveq1i 5526 . . . . . . . . . . . 12  |-  ( A `
 i )  =  ( ( { <. 1 ,  X >. , 
<. 2 ,  Y >. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)
57 axlowdimlem2 24571 . . . . . . . . . . . . 13  |-  ( ( 1 ... 2 )  i^i  ( 3 ... N ) )  =  (/)
58 axlowdimlem17.4 . . . . . . . . . . . . . . . 16  |-  X  e.  RR
59 axlowdimlem17.5 . . . . . . . . . . . . . . . 16  |-  Y  e.  RR
6058, 59axlowdimlem4 24573 . . . . . . . . . . . . . . 15  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. } : ( 1 ... 2 ) --> RR
61 ffn 5389 . . . . . . . . . . . . . . 15  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. } : ( 1 ... 2 ) --> RR 
->  { <. 1 ,  X >. ,  <. 2 ,  Y >. }  Fn  ( 1 ... 2 ) )
6260, 61ax-mp 8 . . . . . . . . . . . . . 14  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. }  Fn  ( 1 ... 2 )
63 axlowdimlem1 24570 . . . . . . . . . . . . . . 15  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR
64 ffn 5389 . . . . . . . . . . . . . . 15  |-  ( ( ( 3 ... N
)  X.  { 0 } ) : ( 3 ... N ) --> RR  ->  ( (
3 ... N )  X. 
{ 0 } )  Fn  ( 3 ... N ) )
6563, 64ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( 3 ... N )  X.  { 0 } )  Fn  ( 3 ... N )
66 fvun2 5591 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. }  Fn  ( 1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  i  e.  ( 3 ... N
) ) )  -> 
( ( { <. 1 ,  X >. , 
<. 2 ,  Y >. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  =  ( ( ( 3 ... N
)  X.  { 0 } ) `  i
) )
6762, 65, 66mp3an12 1267 . . . . . . . . . . . . 13  |-  ( ( ( ( 1 ... 2 )  i^i  (
3 ... N ) )  =  (/)  /\  i  e.  ( 3 ... N
) )  ->  (
( { <. 1 ,  X >. ,  <. 2 ,  Y >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  =  ( ( ( 3 ... N )  X.  {
0 } ) `  i ) )
6857, 67mpan 651 . . . . . . . . . . . 12  |-  ( i  e.  ( 3 ... N )  ->  (
( { <. 1 ,  X >. ,  <. 2 ,  Y >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  =  ( ( ( 3 ... N )  X.  {
0 } ) `  i ) )
6956, 68syl5eq 2327 . . . . . . . . . . 11  |-  ( i  e.  ( 3 ... N )  ->  ( A `  i )  =  ( ( ( 3 ... N )  X.  { 0 } ) `  i ) )
70 c0ex 8832 . . . . . . . . . . . 12  |-  0  e.  _V
7170fvconst2 5729 . . . . . . . . . . 11  |-  ( i  e.  ( 3 ... N )  ->  (
( ( 3 ... N )  X.  {
0 } ) `  i )  =  0 )
7269, 71eqtrd 2315 . . . . . . . . . 10  |-  ( i  e.  ( 3 ... N )  ->  ( A `  i )  =  0 )
7372adantl 452 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( A `  i )  =  0 )
7473oveq2d 5874 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( P `  i )  -  ( A `  i ) )  =  ( ( P `  i )  -  0 ) )
7528axlowdimlem7 24576 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  3
)  ->  P  e.  ( EE `  N ) )
7675ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  P  e.  ( EE `  N ) )
77 nnuz 10263 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
781, 77eleqtri 2355 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  1 )
79 fzss1 10830 . . . . . . . . . . . . 13  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( 3 ... N )  C_  ( 1 ... N
) )
8078, 79ax-mp 8 . . . . . . . . . . . 12  |-  ( 3 ... N )  C_  ( 1 ... N
)
8180sseli 3176 . . . . . . . . . . 11  |-  ( i  e.  ( 3 ... N )  ->  i  e.  ( 1 ... N
) )
8281adantl 452 . . . . . . . . . 10  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  i  e.  ( 1 ... N
) )
83 fveecn 24530 . . . . . . . . . 10  |-  ( ( P  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( P `  i )  e.  CC )
8476, 82, 83syl2anc 642 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( P `  i )  e.  CC )
8584subid1d 9146 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( P `  i )  -  0 )  =  ( P `  i
) )
8674, 85eqtrd 2315 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( P `  i )  -  ( A `  i ) )  =  ( P `  i
) )
8786oveq1d 5873 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( (
( P `  i
)  -  ( A `
 i ) ) ^ 2 )  =  ( ( P `  i ) ^ 2 ) )
8887sumeq2dv 12176 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 3 ... N
) ( ( ( P `  i )  -  ( A `  i ) ) ^
2 )  =  sum_ i  e.  ( 3 ... N ) ( ( P `  i
) ^ 2 ) )
8973oveq2d 5874 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( Q `  i )  -  ( A `  i ) )  =  ( ( Q `  i )  -  0 ) )
90 uznnssnn 10266 . . . . . . . . . . . . 13  |-  ( 3  e.  NN  ->  ( ZZ>=
`  3 )  C_  NN )
911, 90ax-mp 8 . . . . . . . . . . . 12  |-  ( ZZ>= ` 
3 )  C_  NN
9291sseli 3176 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  NN )
93 2nn 9877 . . . . . . . . . . . . . 14  |-  2  e.  NN
9493, 77eleqtri 2355 . . . . . . . . . . . . 13  |-  2  e.  ( ZZ>= `  1 )
95 fzss1 10830 . . . . . . . . . . . . 13  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( N  - 
1 ) )  C_  ( 1 ... ( N  -  1 ) ) )
9694, 95ax-mp 8 . . . . . . . . . . . 12  |-  ( 2 ... ( N  - 
1 ) )  C_  ( 1 ... ( N  -  1 ) )
9796sseli 3176 . . . . . . . . . . 11  |-  ( I  e.  ( 2 ... ( N  -  1 ) )  ->  I  e.  ( 1 ... ( N  -  1 ) ) )
9847axlowdimlem10 24579 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )
9992, 97, 98syl2an 463 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  Q  e.  ( EE `  N
) )
100 fveecn 24530 . . . . . . . . . 10  |-  ( ( Q  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( Q `  i )  e.  CC )
10199, 81, 100syl2an 463 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( Q `  i )  e.  CC )
102101subid1d 9146 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( Q `  i )  -  0 )  =  ( Q `  i
) )
10389, 102eqtrd 2315 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( ( Q `  i )  -  ( A `  i ) )  =  ( Q `  i
) )
104103oveq1d 5873 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 3 ... N ) )  ->  ( (
( Q `  i
)  -  ( A `
 i ) ) ^ 2 )  =  ( ( Q `  i ) ^ 2 ) )
105104sumeq2dv 12176 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 3 ... N
) ( ( ( Q `  i )  -  ( A `  i ) ) ^
2 )  =  sum_ i  e.  ( 3 ... N ) ( ( Q `  i
) ^ 2 ) )
10654, 88, 1053eqtr4d 2325 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 3 ... N
) ( ( ( P `  i )  -  ( A `  i ) ) ^
2 )  =  sum_ i  e.  ( 3 ... N ) ( ( ( Q `  i )  -  ( A `  i )
) ^ 2 ) )
10753, 106oveq12d 5876 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  ( sum_ i  e.  ( 1 ... 2 ) ( ( ( P `  i )  -  ( A `  i )
) ^ 2 )  +  sum_ i  e.  ( 3 ... N ) ( ( ( P `
 i )  -  ( A `  i ) ) ^ 2 ) )  =  ( sum_ i  e.  ( 1 ... 2 ) ( ( ( Q `  i )  -  ( A `  i )
) ^ 2 )  +  sum_ i  e.  ( 3 ... N ) ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
10857a1i 10 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/) )
109 eluzelre 10239 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  RR )
110 eluzle 10240 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  3
)  ->  3  <_  N )
111 letr 8914 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  3  e.  RR  /\  N  e.  RR )  ->  (
( 2  <_  3  /\  3  <_  N )  ->  2  <_  N
) )
1123, 4, 111mp3an12 1267 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
( 2  <_  3  /\  3  <_  N )  ->  2  <_  N
) )
1136, 112mpani 657 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
3  <_  N  ->  2  <_  N ) )
114109, 110, 113sylc 56 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  3
)  ->  2  <_  N )
115 1re 8837 . . . . . . . . . 10  |-  1  e.  RR
116 1lt2 9886 . . . . . . . . . 10  |-  1  <  2
117115, 3, 116ltleii 8941 . . . . . . . . 9  |-  1  <_  2
118114, 117jctil 523 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( 1  <_  2  /\  2  <_  N ) )
119118adantr 451 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
1  <_  2  /\  2  <_  N ) )
120 eluzelz 10238 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ZZ )
121120adantr 451 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
122 1z 10053 . . . . . . . . 9  |-  1  e.  ZZ
123 elfz 10788 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  (
2  e.  ( 1 ... N )  <->  ( 1  <_  2  /\  2  <_  N ) ) )
1247, 122, 123mp3an12 1267 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
2  e.  ( 1 ... N )  <->  ( 1  <_  2  /\  2  <_  N ) ) )
125121, 124syl 15 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
2  e.  ( 1 ... N )  <->  ( 1  <_  2  /\  2  <_  N ) ) )
126119, 125mpbird 223 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  2  e.  ( 1 ... N
) )
127 fzsplit 10816 . . . . . 6  |-  ( 2  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... 2 )  u.  (
( 2  +  1 ) ... N ) ) )
128126, 127syl 15 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... 2 )  u.  (
( 2  +  1 ) ... N ) ) )
12921oveq1i 5868 . . . . . 6  |-  ( 3 ... N )  =  ( ( 2  +  1 ) ... N
)
130129uneq2i 3326 . . . . 5  |-  ( ( 1 ... 2 )  u.  ( 3 ... N ) )  =  ( ( 1 ... 2 )  u.  (
( 2  +  1 ) ... N ) )
131128, 130syl6eqr 2333 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... 2 )  u.  (
3 ... N ) ) )
132 fzfid 11035 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  (
1 ... N )  e. 
Fin )
13375ad2antrr 706 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  P  e.  ( EE `  N ) )
134133, 83sylancom 648 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( P `  i )  e.  CC )
135 eluz 10241 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  3  e.  ZZ )  ->  ( 3  e.  (
ZZ>= `  2 )  <->  2  <_  3 ) )
1367, 2, 135mp2an 653 . . . . . . . . . . . 12  |-  ( 3  e.  ( ZZ>= `  2
)  <->  2  <_  3
)
1376, 136mpbir 200 . . . . . . . . . . 11  |-  3  e.  ( ZZ>= `  2 )
138 uzss 10248 . . . . . . . . . . 11  |-  ( 3  e.  ( ZZ>= `  2
)  ->  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  2 ) )
139137, 138ax-mp 8 . . . . . . . . . 10  |-  ( ZZ>= ` 
3 )  C_  ( ZZ>=
`  2 )
140139sseli 3176 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ( ZZ>= `  2 )
)
14158, 59axlowdimlem5 24574 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
14255, 141syl5eqel 2367 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  A  e.  ( EE `  N ) )
143140, 142syl 15 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  3
)  ->  A  e.  ( EE `  N ) )
144143ad2antrr 706 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
145 fveecn 24530 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
146144, 145sylancom 648 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
147134, 146subcld 9157 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( P `  i )  -  ( A `  i ) )  e.  CC )
148147sqcld 11243 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( P `  i
)  -  ( A `
 i ) ) ^ 2 )  e.  CC )
149108, 131, 132, 148fsumsplit 12212 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( P `  i )  -  ( A `  i ) ) ^
2 )  =  (
sum_ i  e.  ( 1 ... 2 ) ( ( ( P `
 i )  -  ( A `  i ) ) ^ 2 )  +  sum_ i  e.  ( 3 ... N ) ( ( ( P `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
15099, 100sylan 457 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( Q `  i )  e.  CC )
151150, 146subcld 9157 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( Q `  i )  -  ( A `  i ) )  e.  CC )
152151sqcld 11243 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  I  e.  ( 2 ... ( N  - 
1 ) ) )  /\  i  e.  ( 1 ... N ) )  ->  ( (
( Q `  i
)  -  ( A `
 i ) ) ^ 2 )  e.  CC )
153108, 131, 132, 152fsumsplit 12212 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( Q `  i )  -  ( A `  i ) ) ^
2 )  =  (
sum_ i  e.  ( 1 ... 2 ) ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 )  +  sum_ i  e.  ( 3 ... N ) ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
154107, 149, 1533eqtr4d 2325 . 2  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( P `  i )  -  ( A `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( Q `  i )  -  ( A `  i )
) ^ 2 ) )
15575adantr 451 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  P  e.  ( EE `  N
) )
156143adantr 451 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  A  e.  ( EE `  N
) )
157 brcgr 24528 . . 3  |-  ( ( ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( <. P ,  A >.Cgr
<. Q ,  A >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( P `  i )  -  ( A `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
158155, 156, 99, 156, 157syl22anc 1183 . 2  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  ( <. P ,  A >.Cgr <. Q ,  A >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( P `  i )  -  ( A `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( Q `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
159154, 158mpbird 223 1  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  I  e.  ( 2 ... ( N  -  1 ) ) )  ->  <. P ,  A >.Cgr <. Q ,  A >. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   <.cop 3643   class class class wbr 4023    X. cxp 4687    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    <_ cle 8868    - cmin 9037   -ucneg 9038   NNcn 9746   2c2 9795   3c3 9796   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104   sum_csu 12158   EEcee 24516  Cgrccgr 24518
This theorem is referenced by:  axlowdim  24589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519  df-cgr 24521
  Copyright terms: Public domain W3C validator