Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdimlem9 Structured version   Unicode version

Theorem axlowdimlem9 25894
Description: Lemma for axlowdim 25905. Calulate the value of  P away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem9  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  3 )  -> 
( P `  K
)  =  0 )

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3  |-  P  =  ( { <. 3 ,  -u 1 >. }  u.  ( ( ( 1 ... N )  \  { 3 } )  X.  { 0 } ) )
21fveq1i 5732 . 2  |-  ( P `
 K )  =  ( ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) `
 K )
3 eldifsn 3929 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { 3 } )  <-> 
( K  e.  ( 1 ... N )  /\  K  =/=  3
) )
4 disjdif 3702 . . . . 5  |-  ( { 3 }  i^i  (
( 1 ... N
)  \  { 3 } ) )  =  (/)
5 3re 10076 . . . . . . . 8  |-  3  e.  RR
65elexi 2967 . . . . . . 7  |-  3  e.  _V
7 negex 9309 . . . . . . 7  |-  -u 1  e.  _V
86, 7fnsn 5507 . . . . . 6  |-  { <. 3 ,  -u 1 >. }  Fn  { 3 }
9 c0ex 9090 . . . . . . . 8  |-  0  e.  _V
109fconst 5632 . . . . . . 7  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
3 } ) --> { 0 }
11 ffn 5594 . . . . . . 7  |-  ( ( ( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { 3 } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { 3 } ) )
1210, 11ax-mp 5 . . . . . 6  |-  ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
3 } )
13 fvun2 5798 . . . . . 6  |-  ( ( { <. 3 ,  -u
1 >. }  Fn  {
3 }  /\  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { 3 } )  /\  ( ( { 3 }  i^i  (
( 1 ... N
)  \  { 3 } ) )  =  (/)  /\  K  e.  ( ( 1 ... N
)  \  { 3 } ) ) )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  K )  =  ( ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) `  K ) )
148, 12, 13mp3an12 1270 . . . . 5  |-  ( ( ( { 3 }  i^i  ( ( 1 ... N )  \  { 3 } ) )  =  (/)  /\  K  e.  ( ( 1 ... N )  \  {
3 } ) )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  K )  =  ( ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) `  K ) )
154, 14mpan 653 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { 3 } )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  K )  =  ( ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) `  K ) )
169fvconst2 5950 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { 3 } )  ->  ( ( ( ( 1 ... N
)  \  { 3 } )  X.  {
0 } ) `  K )  =  0 )
1715, 16eqtrd 2470 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { 3 } )  ->  ( ( {
<. 3 ,  -u
1 >. }  u.  (
( ( 1 ... N )  \  {
3 } )  X. 
{ 0 } ) ) `  K )  =  0 )
183, 17sylbir 206 . 2  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  3 )  -> 
( ( { <. 3 ,  -u 1 >. }  u.  ( (
( 1 ... N
)  \  { 3 } )  X.  {
0 } ) ) `
 K )  =  0 )
192, 18syl5eq 2482 1  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  3 )  -> 
( P `  K
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601    \ cdif 3319    u. cun 3320    i^i cin 3321   (/)c0 3630   {csn 3816   <.cop 3819    X. cxp 4879    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   0cc0 8995   1c1 8996   -ucneg 9297   3c3 10055   ...cfz 11048
This theorem is referenced by:  axlowdimlem16  25901  axlowdimlem17  25902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-i2m1 9063  ax-1ne0 9064  ax-rrecex 9067  ax-cnre 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-neg 9299  df-2 10063  df-3 10064
  Copyright terms: Public domain W3C validator