MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlttri Unicode version

Theorem axlttri 8848
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 8765 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axlttri  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )

Proof of Theorem axlttri
StepHypRef Expression
1 ax-pre-lttri 8765 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  -.  ( A  =  B  \/  B  <RR  A ) ) )
2 ltxrlt 8847 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
3 ltxrlt 8847 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
43ancoms 441 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
54orbi2d 685 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  B  \/  B  < 
A )  <->  ( A  =  B  \/  B  <RR  A ) ) )
65notbid 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  =  B  \/  B  <  A )  <->  -.  ( A  =  B  \/  B  <RR  A ) ) )
71, 2, 63bitr4d 278 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3983   RRcr 8690    <RR cltrr 8695    < clt 8821
This theorem is referenced by:  ltso  8857  leloe  8862  ltnsym  8873  ltadd2  8878  lttrid  8911  ltord1  9253  recgt0  9554  recgt0ii  9616  arch  9915  xrlttri  10426  subgmulg  14583  cosord  19842  logdivlt  19920
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-resscn 8748  ax-pre-lttri 8765
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-ltxr 8826
  Copyright terms: Public domain W3C validator