MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmeredith Unicode version

Theorem axmeredith 1395
Description: Alias for meredith 1394 which "verify markup *" will match to ax-meredith 1396. (Contributed by NM, 21-Aug-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axmeredith  |-  ( ( ( ( ( ph  ->  ps )  ->  ( -.  ch  ->  -.  th )
)  ->  ch )  ->  ta )  ->  (
( ta  ->  ph )  ->  ( th  ->  ph )
) )

Proof of Theorem axmeredith
StepHypRef Expression
1 meredith 1394 1  |-  ( ( ( ( ( ph  ->  ps )  ->  ( -.  ch  ->  -.  th )
)  ->  ch )  ->  ta )  ->  (
( ta  ->  ph )  ->  ( th  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator