MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulf Unicode version

Theorem axmulf 8858
Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 8865. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 8907. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axmulf  |-  x.  :
( CC  X.  CC )
--> CC

Proof of Theorem axmulf
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3017 . . . . . . . . 9  |-  E* z 
z  =  <. (
( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.
21mosubop 4347 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
32mosubop 4347 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
4 anass 630 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
542exbii 1583 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
6 19.42vv 1912 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
75, 6bitri 240 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
872exbii 1583 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
98mobii 2245 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) )
103, 9mpbir 200 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. )
1110moani 2261 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)
1211funoprab 6031 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
13 df-mul 8839 . . . . 5  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
1413funeqi 5357 . . . 4  |-  ( Fun 
x. 
<->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) } )
1512, 14mpbir 200 . . 3  |-  Fun  x.
1613dmeqi 4962 . . . . 5  |-  dom  x.  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .R  u )  +R  ( -1R  .R  (
v  .R  f )
) ) ,  ( ( v  .R  u
)  +R  ( w  .R  f ) )
>. ) ) }
17 dmoprabss 6016 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3284 . . . 4  |-  dom  x.  C_  ( CC  X.  CC )
19 0ncn 8845 . . . . 5  |-  -.  (/)  e.  CC
20 df-c 8833 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
21 oveq1 5952 . . . . . . . 8  |-  ( <.
z ,  w >.  =  x  ->  ( <. z ,  w >.  x.  <. v ,  u >. )  =  ( x  x. 
<. v ,  u >. ) )
2221eleq1d 2424 . . . . . . 7  |-  ( <.
z ,  w >.  =  x  ->  ( ( <. z ,  w >.  x. 
<. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  x. 
<. v ,  u >. )  e.  ( R.  X.  R. ) ) )
23 oveq2 5953 . . . . . . . 8  |-  ( <.
v ,  u >.  =  y  ->  ( x  x.  <. v ,  u >. )  =  ( x  x.  y ) )
2423eleq1d 2424 . . . . . . 7  |-  ( <.
v ,  u >.  =  y  ->  ( (
x  x.  <. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  x.  y )  e.  ( R.  X.  R. ) ) )
25 mulcnsr 8848 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  x.  <. v ,  u >. )  =  <. ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) ,  ( ( w  .R  v
)  +R  ( z  .R  u ) )
>. )
26 mulclsr 8796 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  .R  v
)  e.  R. )
27 m1r 8794 . . . . . . . . . . . 12  |-  -1R  e.  R.
28 mulclsr 8796 . . . . . . . . . . . 12  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  .R  u
)  e.  R. )
29 mulclsr 8796 . . . . . . . . . . . 12  |-  ( ( -1R  e.  R.  /\  ( w  .R  u
)  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
3027, 28, 29sylancr 644 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
31 addclsr 8795 . . . . . . . . . . 11  |-  ( ( ( z  .R  v
)  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) )  e.  R. )
3226, 30, 31syl2an 463 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
3332an4s 799 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
34 mulclsr 8796 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  v  e.  R. )  ->  ( w  .R  v
)  e.  R. )
35 mulclsr 8796 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  u  e.  R. )  ->  ( z  .R  u
)  e.  R. )
36 addclsr 8795 . . . . . . . . . . 11  |-  ( ( ( w  .R  v
)  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( ( w  .R  v )  +R  (
z  .R  u )
)  e.  R. )
3734, 35, 36syl2anr 464 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  u  e.  R. )  /\  ( w  e.  R.  /\  v  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
3837an42s 800 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
39 opelxpi 4803 . . . . . . . . 9  |-  ( ( ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) )  e.  R.  /\  (
( w  .R  v
)  +R  ( z  .R  u ) )  e.  R. )  ->  <. ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) ) ,  ( ( w  .R  v )  +R  ( z  .R  u
) ) >.  e.  ( R.  X.  R. )
)
4033, 38, 39syl2anc 642 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  <. ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u
) ) ) ,  ( ( w  .R  v )  +R  (
z  .R  u )
) >.  e.  ( R. 
X.  R. ) )
4125, 40eqeltrd 2432 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  x.  <. v ,  u >. )  e.  ( R.  X.  R. ) )
4220, 22, 24, 412optocl 4847 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  ( R. 
X.  R. ) )
4342, 20syl6eleqr 2449 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
4419, 43oprssdm 6089 . . . 4  |-  ( CC 
X.  CC )  C_  dom  x.
4518, 44eqssi 3271 . . 3  |-  dom  x.  =  ( CC  X.  CC )
46 df-fn 5340 . . 3  |-  (  x.  Fn  ( CC  X.  CC )  <->  ( Fun  x.  /\  dom  x.  =  ( CC  X.  CC ) ) )
4715, 45, 46mpbir2an 886 . 2  |-  x.  Fn  ( CC  X.  CC )
4843rgen2a 2685 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC
49 ffnov 6035 . 2  |-  (  x.  : ( CC  X.  CC ) --> CC  <->  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC ) )
5047, 48, 49mpbir2an 886 1  |-  x.  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710   E*wmo 2210   A.wral 2619   <.cop 3719    X. cxp 4769   dom cdm 4771   Fun wfun 5331    Fn wfn 5332   -->wf 5333  (class class class)co 5945   {coprab 5946   R.cnr 8579   -1Rcm1r 8582    +R cplr 8583    .R cmr 8584   CCcc 8825    x. cmul 8832
This theorem is referenced by:  axmulcl  8865
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-omul 6571  df-er 6747  df-ec 6749  df-qs 6753  df-ni 8586  df-pli 8587  df-mi 8588  df-lti 8589  df-plpq 8622  df-mpq 8623  df-ltpq 8624  df-enq 8625  df-nq 8626  df-erq 8627  df-plq 8628  df-mq 8629  df-1nq 8630  df-rq 8631  df-ltnq 8632  df-np 8695  df-1p 8696  df-plp 8697  df-mp 8698  df-ltp 8699  df-plpr 8769  df-mpr 8770  df-enr 8771  df-nr 8772  df-plr 8773  df-mr 8774  df-m1r 8778  df-c 8833  df-mul 8839
  Copyright terms: Public domain W3C validator