Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axpaschlem Unicode version

Theorem axpaschlem 24640
Description: Lemma for axpasch 24641. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.)
Assertion
Ref Expression
axpaschlem  |-  ( ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  ->  E. r  e.  ( 0 [,] 1 ) E. p  e.  ( 0 [,] 1 ) ( p  =  ( ( 1  -  r
)  x.  ( 1  -  T ) )  /\  r  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p
)  x.  S ) ) )
Distinct variable groups:    T, p, r    S, p, r

Proof of Theorem axpaschlem
StepHypRef Expression
1 1re 8853 . . . . . . . 8  |-  1  e.  RR
2 0re 8854 . . . . . . . . . . 11  |-  0  e.  RR
32, 1elicc2i 10732 . . . . . . . . . 10  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
43simp1bi 970 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
54ad2antrl 708 . . . . . . . 8  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  e.  RR )
6 resubcl 9127 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
71, 5, 6sylancr 644 . . . . . . 7  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  T )  e.  RR )
87recnd 8877 . . . . . 6  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  T )  e.  CC )
98mul02d 9026 . . . . 5  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  x.  ( 1  -  T ) )  =  0 )
109eqcomd 2301 . . . 4  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  =  ( 0  x.  ( 1  -  T
) ) )
112, 1elicc2i 10732 . . . . . . . . . 10  |-  ( S  e.  ( 0 [,] 1 )  <->  ( S  e.  RR  /\  0  <_  S  /\  S  <_  1
) )
1211simp1bi 970 . . . . . . . . 9  |-  ( S  e.  ( 0 [,] 1 )  ->  S  e.  RR )
1312ad2antll 709 . . . . . . . 8  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  e.  RR )
14 resubcl 9127 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  S  e.  RR )  ->  ( 1  -  S
)  e.  RR )
151, 13, 14sylancr 644 . . . . . . 7  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  e.  RR )
1615recnd 8877 . . . . . 6  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  e.  CC )
1716mulid2d 8869 . . . . 5  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  x.  ( 1  -  S ) )  =  ( 1  -  S ) )
18 oveq2 5882 . . . . . . 7  |-  ( S  =  0  ->  (
1  -  S )  =  ( 1  -  0 ) )
1918adantr 451 . . . . . 6  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  =  ( 1  -  0 ) )
20 ax-1cn 8811 . . . . . . 7  |-  1  e.  CC
2120subid1i 9134 . . . . . 6  |-  ( 1  -  0 )  =  1
2219, 21syl6eq 2344 . . . . 5  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  =  1 )
2317, 22eqtr2d 2329 . . . 4  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  1  =  ( 1  x.  ( 1  -  S
) ) )
245recnd 8877 . . . . . 6  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  e.  CC )
2524mul02d 9026 . . . . 5  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  x.  T )  =  0 )
26 oveq2 5882 . . . . . . 7  |-  ( S  =  0  ->  (
1  x.  S )  =  ( 1  x.  0 ) )
2726adantr 451 . . . . . 6  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  x.  S )  =  ( 1  x.  0 ) )
2820mul01i 9018 . . . . . 6  |-  ( 1  x.  0 )  =  0
2927, 28syl6eq 2344 . . . . 5  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  x.  S )  =  0 )
3025, 29eqtr4d 2331 . . . 4  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  x.  T )  =  ( 1  x.  S ) )
31 1elunit 10771 . . . . 5  |-  1  e.  ( 0 [,] 1
)
32 0elunit 10770 . . . . 5  |-  0  e.  ( 0 [,] 1
)
33 oveq2 5882 . . . . . . . . . 10  |-  ( r  =  1  ->  (
1  -  r )  =  ( 1  -  1 ) )
34 1m1e0 9830 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
3533, 34syl6eq 2344 . . . . . . . . 9  |-  ( r  =  1  ->  (
1  -  r )  =  0 )
3635oveq1d 5889 . . . . . . . 8  |-  ( r  =  1  ->  (
( 1  -  r
)  x.  ( 1  -  T ) )  =  ( 0  x.  ( 1  -  T
) ) )
3736eqeq2d 2307 . . . . . . 7  |-  ( r  =  1  ->  (
p  =  ( ( 1  -  r )  x.  ( 1  -  T ) )  <->  p  =  ( 0  x.  (
1  -  T ) ) ) )
38 eqeq1 2302 . . . . . . 7  |-  ( r  =  1  ->  (
r  =  ( ( 1  -  p )  x.  ( 1  -  S ) )  <->  1  =  ( ( 1  -  p )  x.  (
1  -  S ) ) ) )
3935oveq1d 5889 . . . . . . . 8  |-  ( r  =  1  ->  (
( 1  -  r
)  x.  T )  =  ( 0  x.  T ) )
4039eqeq1d 2304 . . . . . . 7  |-  ( r  =  1  ->  (
( ( 1  -  r )  x.  T
)  =  ( ( 1  -  p )  x.  S )  <->  ( 0  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
4137, 38, 403anbi123d 1252 . . . . . 6  |-  ( r  =  1  ->  (
( p  =  ( ( 1  -  r
)  x.  ( 1  -  T ) )  /\  r  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p
)  x.  S ) )  <->  ( p  =  ( 0  x.  (
1  -  T ) )  /\  1  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( 0  x.  T )  =  ( ( 1  -  p )  x.  S
) ) ) )
42 eqeq1 2302 . . . . . . 7  |-  ( p  =  0  ->  (
p  =  ( 0  x.  ( 1  -  T ) )  <->  0  =  ( 0  x.  (
1  -  T ) ) ) )
43 oveq2 5882 . . . . . . . . . 10  |-  ( p  =  0  ->  (
1  -  p )  =  ( 1  -  0 ) )
4443, 21syl6eq 2344 . . . . . . . . 9  |-  ( p  =  0  ->  (
1  -  p )  =  1 )
4544oveq1d 5889 . . . . . . . 8  |-  ( p  =  0  ->  (
( 1  -  p
)  x.  ( 1  -  S ) )  =  ( 1  x.  ( 1  -  S
) ) )
4645eqeq2d 2307 . . . . . . 7  |-  ( p  =  0  ->  (
1  =  ( ( 1  -  p )  x.  ( 1  -  S ) )  <->  1  =  ( 1  x.  (
1  -  S ) ) ) )
4744oveq1d 5889 . . . . . . . 8  |-  ( p  =  0  ->  (
( 1  -  p
)  x.  S )  =  ( 1  x.  S ) )
4847eqeq2d 2307 . . . . . . 7  |-  ( p  =  0  ->  (
( 0  x.  T
)  =  ( ( 1  -  p )  x.  S )  <->  ( 0  x.  T )  =  ( 1  x.  S
) ) )
4942, 46, 483anbi123d 1252 . . . . . 6  |-  ( p  =  0  ->  (
( p  =  ( 0  x.  ( 1  -  T ) )  /\  1  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( 0  x.  T )  =  ( ( 1  -  p
)  x.  S ) )  <->  ( 0  =  ( 0  x.  (
1  -  T ) )  /\  1  =  ( 1  x.  (
1  -  S ) )  /\  ( 0  x.  T )  =  ( 1  x.  S
) ) ) )
5041, 49rspc2ev 2905 . . . . 5  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 )  /\  ( 0  =  ( 0  x.  ( 1  -  T ) )  /\  1  =  ( 1  x.  ( 1  -  S ) )  /\  ( 0  x.  T )  =  ( 1  x.  S ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
5131, 32, 50mp3an12 1267 . . . 4  |-  ( ( 0  =  ( 0  x.  ( 1  -  T ) )  /\  1  =  ( 1  x.  ( 1  -  S ) )  /\  ( 0  x.  T
)  =  ( 1  x.  S ) )  ->  E. r  e.  ( 0 [,] 1 ) E. p  e.  ( 0 [,] 1 ) ( p  =  ( ( 1  -  r
)  x.  ( 1  -  T ) )  /\  r  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p
)  x.  S ) ) )
5210, 23, 30, 51syl3anc 1182 . . 3  |-  ( ( S  =  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
5352ex 423 . 2  |-  ( S  =  0  ->  (
( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) ) )
544ad2antrl 708 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  e.  RR )
5512ad2antll 709 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  e.  RR )
5655, 54remulcld 8879 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  e.  RR )
5754, 56resubcld 9227 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  -  ( S  x.  T ) )  e.  RR )
5855, 54readdcld 8878 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  +  T )  e.  RR )
5958, 56resubcld 9227 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  +  T
)  -  ( S  x.  T ) )  e.  RR )
601a1i 10 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  1  e.  RR )
613simp2bi 971 . . . . . . . . . . . 12  |-  ( T  e.  ( 0 [,] 1 )  ->  0  <_  T )
6261ad2antrl 708 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  T )
6311simp3bi 972 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 [,] 1 )  ->  S  <_  1 )
6463ad2antll 709 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  <_  1 )
6555, 60, 54, 62, 64lemul1ad 9712 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  <_  ( 1  x.  T
) )
6654recnd 8877 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  e.  CC )
6766mulid2d 8869 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  x.  T )  =  T )
6865, 67breqtrd 4063 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  <_  T )
6911simp2bi 971 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 [,] 1 )  ->  0  <_  S )
7069ad2antll 709 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  S )
71 simpl 443 . . . . . . . . . . 11  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  =/=  0 )
7255, 70, 71ne0gt0d 8972 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <  S )
7355, 54ltaddpos2d 9373 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  <  S  <->  T  <  ( S  +  T ) ) )
7472, 73mpbid 201 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  <  ( S  +  T
) )
7556, 54, 58, 68, 74lelttrd 8990 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  <  ( S  +  T
) )
7656, 58posdifd 9375 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  T
)  <  ( S  +  T )  <->  0  <  ( ( S  +  T
)  -  ( S  x.  T ) ) ) )
7775, 76mpbid 201 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <  ( ( S  +  T )  -  ( S  x.  T )
) )
7877gt0ne0d 9353 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  +  T
)  -  ( S  x.  T ) )  =/=  0 )
7957, 59, 78redivcld 9604 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  RR )
8054, 56subge0d 9378 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  <_  ( T  -  ( S  x.  T ) )  <->  ( S  x.  T )  <_  T
) )
8168, 80mpbird 223 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  ( T  -  ( S  x.  T )
) )
82 divge0 9641 . . . . . 6  |-  ( ( ( ( T  -  ( S  x.  T
) )  e.  RR  /\  0  <_  ( T  -  ( S  x.  T ) ) )  /\  ( ( ( S  +  T )  -  ( S  x.  T ) )  e.  RR  /\  0  < 
( ( S  +  T )  -  ( S  x.  T )
) ) )  -> 
0  <_  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )
8357, 81, 59, 77, 82syl22anc 1183 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
8454, 58, 74ltled 8983 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  <_  ( S  +  T
) )
8554, 58, 56, 84lesub1dd 9404 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  -  ( S  x.  T ) )  <_ 
( ( S  +  T )  -  ( S  x.  T )
) )
8659recnd 8877 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  +  T
)  -  ( S  x.  T ) )  e.  CC )
8786mulid2d 8869 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  x.  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( S  +  T )  -  ( S  x.  T
) ) )
8885, 87breqtrrd 4065 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  -  ( S  x.  T ) )  <_ 
( 1  x.  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
89 ledivmul2 9649 . . . . . . 7  |-  ( ( ( T  -  ( S  x.  T )
)  e.  RR  /\  1  e.  RR  /\  (
( ( S  +  T )  -  ( S  x.  T )
)  e.  RR  /\  0  <  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  ->  ( ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  <_ 
1  <->  ( T  -  ( S  x.  T
) )  <_  (
1  x.  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
9057, 60, 59, 77, 89syl112anc 1186 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  <_  1  <->  ( T  -  ( S  x.  T ) )  <_ 
( 1  x.  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
9188, 90mpbird 223 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  <_  1 )
922, 1elicc2i 10732 . . . . 5  |-  ( ( ( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 )  <->  ( (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  RR  /\  0  <_  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  /\  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  <_ 
1 ) )
9379, 83, 91, 92syl3anbrc 1136 . . . 4  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 ) )
9455, 56resubcld 9227 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  -  ( S  x.  T ) )  e.  RR )
9594, 59, 78redivcld 9604 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  RR )
963simp3bi 972 . . . . . . . . . 10  |-  ( T  e.  ( 0 [,] 1 )  ->  T  <_  1 )
9796ad2antrl 708 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  T  <_  1 )
9854, 60, 55, 70, 97lemul2ad 9713 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  <_  ( S  x.  1 ) )
9955recnd 8877 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  e.  CC )
10099mulid1d 8868 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  1 )  =  S )
10198, 100breqtrd 4063 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  <_  S )
10255, 56subge0d 9378 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  <_  ( S  -  ( S  x.  T ) )  <->  ( S  x.  T )  <_  S
) )
103101, 102mpbird 223 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  ( S  -  ( S  x.  T )
) )
104 divge0 9641 . . . . . 6  |-  ( ( ( ( S  -  ( S  x.  T
) )  e.  RR  /\  0  <_  ( S  -  ( S  x.  T ) ) )  /\  ( ( ( S  +  T )  -  ( S  x.  T ) )  e.  RR  /\  0  < 
( ( S  +  T )  -  ( S  x.  T )
) ) )  -> 
0  <_  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )
10594, 103, 59, 77, 104syl22anc 1183 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  0  <_  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
10655, 54addge01d 9376 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
0  <_  T  <->  S  <_  ( S  +  T ) ) )
10762, 106mpbid 201 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  S  <_  ( S  +  T
) )
10855, 58, 56, 107lesub1dd 9404 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  -  ( S  x.  T ) )  <_ 
( ( S  +  T )  -  ( S  x.  T )
) )
109108, 87breqtrrd 4065 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  -  ( S  x.  T ) )  <_ 
( 1  x.  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
110 ledivmul2 9649 . . . . . . 7  |-  ( ( ( S  -  ( S  x.  T )
)  e.  RR  /\  1  e.  RR  /\  (
( ( S  +  T )  -  ( S  x.  T )
)  e.  RR  /\  0  <  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  ->  ( ( ( S  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  <_ 
1  <->  ( S  -  ( S  x.  T
) )  <_  (
1  x.  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
11194, 60, 59, 77, 110syl112anc 1186 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  <_  1  <->  ( S  -  ( S  x.  T ) )  <_ 
( 1  x.  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
112109, 111mpbird 223 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  <_  1 )
1132, 1elicc2i 10732 . . . . 5  |-  ( ( ( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 )  <->  ( (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  RR  /\  0  <_  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  /\  ( ( S  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  <_ 
1 ) )
11495, 105, 112, 113syl3anbrc 1136 . . . 4  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 ) )
1151, 54, 6sylancr 644 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  T )  e.  RR )
116115recnd 8877 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  T )  e.  CC )
11799, 116, 86, 78div23d 9589 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  (
1  -  T ) )  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( S  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  x.  ( 1  -  T
) ) )
118 subdi 9229 . . . . . . . . 9  |-  ( ( S  e.  CC  /\  1  e.  CC  /\  T  e.  CC )  ->  ( S  x.  ( 1  -  T ) )  =  ( ( S  x.  1 )  -  ( S  x.  T
) ) )
11920, 118mp3an2 1265 . . . . . . . 8  |-  ( ( S  e.  CC  /\  T  e.  CC )  ->  ( S  x.  (
1  -  T ) )  =  ( ( S  x.  1 )  -  ( S  x.  T ) ) )
12099, 66, 119syl2anc 642 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  ( 1  -  T ) )  =  ( ( S  x.  1 )  -  ( S  x.  T
) ) )
121100oveq1d 5889 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  1 )  -  ( S  x.  T ) )  =  ( S  -  ( S  x.  T
) ) )
122120, 121eqtrd 2328 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  ( 1  -  T ) )  =  ( S  -  ( S  x.  T
) ) )
123122oveq1d 5889 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  (
1  -  T ) )  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )
12457recnd 8877 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  -  ( S  x.  T ) )  e.  CC )
12586, 124, 86, 78divsubdird 9591 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  -  ( T  -  ( S  x.  T ) ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( ( ( ( S  +  T )  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
12658recnd 8877 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  +  T )  e.  CC )
12756recnd 8877 . . . . . . . . . 10  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  e.  CC )
128126, 66, 127nnncan2d 9208 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  +  T )  -  ( S  x.  T )
)  -  ( T  -  ( S  x.  T ) ) )  =  ( ( S  +  T )  -  T ) )
12999, 66pncand 9174 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  +  T
)  -  T )  =  S )
130128, 129eqtrd 2328 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  +  T )  -  ( S  x.  T )
)  -  ( T  -  ( S  x.  T ) ) )  =  S )
131130oveq1d 5889 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  -  ( T  -  ( S  x.  T ) ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( S  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
13286, 78dividd 9550 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  +  T )  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  1 )
133132oveq1d 5889 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  =  ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
134125, 131, 1333eqtr3d 2336 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( 1  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
135134oveq1d 5889 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  x.  ( 1  -  T ) )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  T
) ) )
136117, 123, 1353eqtr3d 2336 . . . 4  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  T
) ) )
1371, 55, 14sylancr 644 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  e.  RR )
138137recnd 8877 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  S )  e.  CC )
13966, 138, 86, 78div23d 9589 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  x.  (
1  -  S ) )  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( T  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  x.  ( 1  -  S
) ) )
140 subdi 9229 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  1  e.  CC  /\  S  e.  CC )  ->  ( T  x.  ( 1  -  S ) )  =  ( ( T  x.  1 )  -  ( T  x.  S
) ) )
14120, 140mp3an2 1265 . . . . . . . 8  |-  ( ( T  e.  CC  /\  S  e.  CC )  ->  ( T  x.  (
1  -  S ) )  =  ( ( T  x.  1 )  -  ( T  x.  S ) ) )
14266, 99, 141syl2anc 642 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  x.  ( 1  -  S ) )  =  ( ( T  x.  1 )  -  ( T  x.  S
) ) )
14366mulid1d 8868 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  x.  1 )  =  T )
14466, 99mulcomd 8872 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  x.  S )  =  ( S  x.  T ) )
145143, 144oveq12d 5892 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  x.  1 )  -  ( T  x.  S ) )  =  ( T  -  ( S  x.  T
) ) )
146142, 145eqtrd 2328 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  x.  ( 1  -  S ) )  =  ( T  -  ( S  x.  T
) ) )
147146oveq1d 5889 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  x.  (
1  -  S ) )  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )
14894recnd 8877 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  -  ( S  x.  T ) )  e.  CC )
14986, 148, 86, 78divsubdird 9591 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  -  ( S  -  ( S  x.  T ) ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( ( ( ( S  +  T )  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  -  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
150126, 99, 127nnncan2d 9208 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  +  T )  -  ( S  x.  T )
)  -  ( S  -  ( S  x.  T ) ) )  =  ( ( S  +  T )  -  S ) )
15199, 66pncan2d 9175 . . . . . . . . 9  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  +  T
)  -  S )  =  T )
152150, 151eqtrd 2328 . . . . . . . 8  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( S  +  T )  -  ( S  x.  T )
)  -  ( S  -  ( S  x.  T ) ) )  =  T )
153152oveq1d 5889 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  -  ( S  -  ( S  x.  T ) ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( T  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )
154132oveq1d 5889 . . . . . . 7  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( ( ( S  +  T )  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  -  ( ( S  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  =  ( 1  -  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
155149, 153, 1543eqtr3d 2336 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( T  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( 1  -  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) ) )
156155oveq1d 5889 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  x.  ( 1  -  S ) )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  S
) ) )
157139, 147, 1563eqtr3d 2336 . . . 4  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  S
) ) )
15899, 66mulcomd 8872 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  ( S  x.  T )  =  ( T  x.  S ) )
159158oveq1d 5889 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  T
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( T  x.  S )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )
16099, 66, 86, 78div23d 9589 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  T
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( S  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  x.  T ) )
161134oveq1d 5889 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  x.  T )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  T ) )
162160, 161eqtrd 2328 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( S  x.  T
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  T ) )
16366, 99, 86, 78div23d 9589 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  x.  S
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( T  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  x.  S ) )
164155oveq1d 5889 . . . . . 6  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  x.  S )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  S ) )
165163, 164eqtrd 2328 . . . . 5  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( T  x.  S
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  S ) )
166159, 162, 1653eqtr3d 2336 . . . 4  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  (
( 1  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  T )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  S ) )
167 oveq2 5882 . . . . . . . 8  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
1  -  r )  =  ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
168167oveq1d 5889 . . . . . . 7  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( 1  -  r
)  x.  ( 1  -  T ) )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  T
) ) )
169168eqeq2d 2307 . . . . . 6  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
p  =  ( ( 1  -  r )  x.  ( 1  -  T ) )  <->  p  =  ( ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  (
1  -  T ) ) ) )
170 eqeq1 2302 . . . . . 6  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
r  =  ( ( 1  -  p )  x.  ( 1  -  S ) )  <->  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  p
)  x.  ( 1  -  S ) ) ) )
171167oveq1d 5889 . . . . . . 7  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( 1  -  r
)  x.  T )  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  T ) )
172171eqeq1d 2304 . . . . . 6  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( ( 1  -  r )  x.  T
)  =  ( ( 1  -  p )  x.  S )  <->  ( (
1  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
173169, 170, 1723anbi123d 1252 . . . . 5  |-  ( r  =  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( p  =  ( ( 1  -  r
)  x.  ( 1  -  T ) )  /\  r  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p
)  x.  S ) )  <->  ( p  =  ( ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  (
1  -  T ) )  /\  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) ) )
174 eqeq1 2302 . . . . . 6  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
p  =  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  x.  ( 1  -  T ) )  <->  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  ( 1  -  T ) ) ) )
175 oveq2 5882 . . . . . . . 8  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
1  -  p )  =  ( 1  -  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) ) )
176175oveq1d 5889 . . . . . . 7  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( 1  -  p
)  x.  ( 1  -  S ) )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  ( 1  -  S
) ) )
177176eqeq2d 2307 . . . . . 6  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  =  ( ( 1  -  p )  x.  ( 1  -  S ) )  <->  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  ( 1  -  S ) ) ) )
178175oveq1d 5889 . . . . . . 7  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( 1  -  p
)  x.  S )  =  ( ( 1  -  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  S ) )
179178eqeq2d 2307 . . . . . 6  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  T
)  =  ( ( 1  -  p )  x.  S )  <->  ( (
1  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  x.  T )  =  ( ( 1  -  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  S
) ) )
180174, 177, 1793anbi123d 1252 . . . . 5  |-  ( p  =  ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  ->  (
( p  =  ( ( 1  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  ( 1  -  T ) )  /\  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  T )  =  ( ( 1  -  p
)  x.  S ) )  <->  ( ( ( S  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( ( 1  -  ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  (
1  -  T ) )  /\  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) )  =  ( ( 1  -  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  (
1  -  S ) )  /\  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  /  ( ( S  +  T )  -  ( S  x.  T
) ) ) )  x.  T )  =  ( ( 1  -  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) ) )  x.  S
) ) ) )
181173, 180rspc2ev 2905 . . . 4  |-  ( ( ( ( T  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 )  /\  ( ( S  -  ( S  x.  T
) )  /  (
( S  +  T
)  -  ( S  x.  T ) ) )  e.  ( 0 [,] 1 )  /\  ( ( ( S  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  (
( T  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  ( 1  -  T ) )  /\  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) )  =  ( ( 1  -  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  ( 1  -  S ) )  /\  ( ( 1  -  ( ( T  -  ( S  x.  T ) )  / 
( ( S  +  T )  -  ( S  x.  T )
) ) )  x.  T )  =  ( ( 1  -  (
( S  -  ( S  x.  T )
)  /  ( ( S  +  T )  -  ( S  x.  T ) ) ) )  x.  S ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
18293, 114, 136, 157, 166, 181syl113anc 1194 . . 3  |-  ( ( S  =/=  0  /\  ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) )
183182ex 423 . 2  |-  ( S  =/=  0  ->  (
( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  ->  E. r  e.  ( 0 [,] 1
) E. p  e.  ( 0 [,] 1
) ( p  =  ( ( 1  -  r )  x.  (
1  -  T ) )  /\  r  =  ( ( 1  -  p )  x.  (
1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p )  x.  S
) ) ) )
18453, 183pm2.61ine 2535 1  |-  ( ( T  e.  ( 0 [,] 1 )  /\  S  e.  ( 0 [,] 1 ) )  ->  E. r  e.  ( 0 [,] 1 ) E. p  e.  ( 0 [,] 1 ) ( p  =  ( ( 1  -  r
)  x.  ( 1  -  T ) )  /\  r  =  ( ( 1  -  p
)  x.  ( 1  -  S ) )  /\  ( ( 1  -  r )  x.  T )  =  ( ( 1  -  p
)  x.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   [,]cicc 10675
This theorem is referenced by:  axpasch  24641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-icc 10679
  Copyright terms: Public domain W3C validator