HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axpjcl Structured version   Unicode version

Theorem axpjcl 22902
Description: Closure of a projection in its subspace. If we consider this together with axpjpj 22922 to be axioms, the need for the ax-hcompl 22704 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 22937.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axpjcl  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( proj  h `  H ) `  A
)  e.  H )

Proof of Theorem axpjcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . . 3  |-  ( (
proj  h `  H ) `
 A )  =  ( ( proj  h `  H ) `  A
)
2 pjeq 22901 . . 3  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( ( proj 
h `  H ) `  A )  =  ( ( proj  h `  H
) `  A )  <->  ( ( ( proj  h `  H ) `  A
)  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( ( ( proj 
h `  H ) `  A )  +h  x
) ) ) )
31, 2mpbii 203 . 2  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( ( proj 
h `  H ) `  A )  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( ( ( proj  h `  H
) `  A )  +h  x ) ) )
43simpld 446 1  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( proj  h `  H ) `  A
)  e.  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   ` cfv 5454  (class class class)co 6081   ~Hchil 22422    +h cva 22423   CHcch 22432   _|_cort 22433   proj 
hcpjh 22440
This theorem is referenced by:  pjhcl  22903  pjcli  22919  pjpjhth  22927  pjoccl  22935  pjspansn  23079  pjorthi  23171  pjcompi  23174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070  ax-hilex 22502  ax-hfvadd 22503  ax-hvcom 22504  ax-hvass 22505  ax-hv0cl 22506  ax-hvaddid 22507  ax-hfvmul 22508  ax-hvmulid 22509  ax-hvmulass 22510  ax-hvdistr1 22511  ax-hvdistr2 22512  ax-hvmul0 22513  ax-hfi 22581  ax-his1 22584  ax-his2 22585  ax-his3 22586  ax-his4 22587  ax-hcompl 22704
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ico 10922  df-icc 10923  df-fz 11044  df-fl 11202  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-rest 13650  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-top 16963  df-bases 16965  df-topon 16966  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lm 17293  df-haus 17379  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-cfil 19208  df-cau 19209  df-cmet 19210  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870  df-subgo 21890  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-vs 22078  df-nmcv 22079  df-ims 22080  df-ssp 22221  df-ph 22314  df-cbn 22365  df-hnorm 22471  df-hba 22472  df-hvsub 22474  df-hlim 22475  df-hcau 22476  df-sh 22709  df-ch 22724  df-oc 22754  df-ch0 22755  df-shs 22810  df-pjh 22897
  Copyright terms: Public domain W3C validator