MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpow2 Unicode version

Theorem axpow2 4190
Description: A variant of the Axiom of Power Sets ax-pow 4188 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow2  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
Distinct variable group:    x, y, z

Proof of Theorem axpow2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-pow 4188 . 2  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
2 dfss2 3169 . . . . 5  |-  ( z 
C_  x  <->  A. w
( w  e.  z  ->  w  e.  x
) )
32imbi1i 315 . . . 4  |-  ( ( z  C_  x  ->  z  e.  y )  <->  ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
43albii 1553 . . 3  |-  ( A. z ( z  C_  x  ->  z  e.  y )  <->  A. z ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
54exbii 1569 . 2  |-  ( E. y A. z ( z  C_  x  ->  z  e.  y )  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
61, 5mpbir 200 1  |-  E. y A. z ( z  C_  x  ->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527   E.wex 1528    e. wcel 1684    C_ wss 3152
This theorem is referenced by:  axpow3  4191  pwex  4193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator