MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-ltadd Unicode version

Theorem axpre-ltadd 8789
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 8896. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 8813. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltadd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )

Proof of Theorem axpre-ltadd
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 8753 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 8753 . . 3  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 8753 . . 3  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 breq1 4026 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
5 oveq2 5866 . . . . 5  |-  ( <.
x ,  0R >.  =  A  ->  ( <. z ,  0R >.  +  <. x ,  0R >. )  =  ( <. z ,  0R >.  +  A
) )
65breq1d 4033 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  ( <. z ,  0R >.  +  A
)  <RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) ) )
74, 6bibi12d 312 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) )  <->  ( A  <RR 
<. y ,  0R >.  <->  ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. ) ) ) )
8 breq2 4027 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
9 oveq2 5866 . . . . 5  |-  ( <.
y ,  0R >.  =  B  ->  ( <. z ,  0R >.  +  <. y ,  0R >. )  =  ( <. z ,  0R >.  +  B
) )
109breq2d 4035 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. )  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  +  B ) ) )
118, 10bibi12d 312 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  + 
<. y ,  0R >. ) )  <->  ( A  <RR  B  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  +  B ) ) ) )
12 oveq1 5865 . . . . 5  |-  ( <.
z ,  0R >.  =  C  ->  ( <. z ,  0R >.  +  A
)  =  ( C  +  A ) )
13 oveq1 5865 . . . . 5  |-  ( <.
z ,  0R >.  =  C  ->  ( <. z ,  0R >.  +  B
)  =  ( C  +  B ) )
1412, 13breq12d 4036 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  +  B )  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
1514bibi2d 309 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  <RR  B  <->  ( <. z ,  0R >.  +  A
)  <RR  ( <. z ,  0R >.  +  B
) )  <->  ( A  <RR  B  <->  ( C  +  A )  <RR  ( C  +  B ) ) ) )
16 ltasr 8722 . . . . . . 7  |-  ( z  e.  R.  ->  (
x  <R  y  <->  ( z  +R  x )  <R  (
z  +R  y ) ) )
1716adantr 451 . . . . . 6  |-  ( ( z  e.  R.  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( x  <R  y  <->  ( z  +R  x )  <R  (
z  +R  y ) ) )
18 ltresr 8762 . . . . . . 7  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
1918a1i 10 . . . . . 6  |-  ( ( z  e.  R.  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y ) )
20 addresr 8760 . . . . . . . . 9  |-  ( ( z  e.  R.  /\  x  e.  R. )  ->  ( <. z ,  0R >.  +  <. x ,  0R >. )  =  <. (
z  +R  x ) ,  0R >. )
21 addresr 8760 . . . . . . . . 9  |-  ( ( z  e.  R.  /\  y  e.  R. )  ->  ( <. z ,  0R >.  +  <. y ,  0R >. )  =  <. (
z  +R  y ) ,  0R >. )
2220, 21breqan12d 4038 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  x  e.  R. )  /\  ( z  e.  R.  /\  y  e.  R. )
)  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  <. ( z  +R  x ) ,  0R >. 
<RR  <. ( z  +R  y ) ,  0R >. ) )
2322anandis 803 . . . . . . 7  |-  ( ( z  e.  R.  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  <. ( z  +R  x ) ,  0R >. 
<RR  <. ( z  +R  y ) ,  0R >. ) )
24 ltresr 8762 . . . . . . 7  |-  ( <.
( z  +R  x
) ,  0R >.  <RR  <. ( z  +R  y
) ,  0R >.  <->  (
z  +R  x ) 
<R  ( z  +R  y
) )
2523, 24syl6bb 252 . . . . . 6  |-  ( ( z  e.  R.  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  ( z  +R  x )  <R  (
z  +R  y ) ) )
2617, 19, 253bitr4d 276 . . . . 5  |-  ( ( z  e.  R.  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  +  <. x ,  0R >. )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. ) ) )
2726ancoms 439 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  z  e.  R. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  +  <. x ,  0R >. )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. ) ) )
28273impa 1146 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) ) )
291, 2, 3, 7, 11, 15, 283gencl 2818 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
3029biimpd 198 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023  (class class class)co 5858   R.cnr 8489   0Rc0r 8490    +R cplr 8493    <R cltr 8495   RRcr 8736    + caddc 8740    <RR cltrr 8741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-plp 8607  df-ltp 8609  df-plpr 8679  df-enr 8681  df-nr 8682  df-plr 8683  df-ltr 8685  df-0r 8686  df-c 8743  df-r 8747  df-add 8748  df-lt 8750
  Copyright terms: Public domain W3C validator