MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axreg2 Unicode version

Theorem axreg2 7307
Description: Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
axreg2  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) )
Distinct variable group:    x, y, z

Proof of Theorem axreg2
StepHypRef Expression
1 ax-reg 7306 . 2  |-  ( E. x  x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) )
2119.23bi 1802 1  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1684
This theorem is referenced by:  zfregcl  7308  axregndlem2  8225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-ex 1529
  Copyright terms: Public domain W3C validator