MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregnd Structured version   Unicode version

Theorem axregnd 8479
Description: A version of the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axregnd  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) )

Proof of Theorem axregnd
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 axregndlem2 8478 . . . 4  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. w ( w  e.  x  ->  -.  w  e.  y
) ) )
2 nfnae 2044 . . . . . 6  |-  F/ x  -.  A. z  z  =  x
3 nfnae 2044 . . . . . 6  |-  F/ x  -.  A. z  z  =  y
42, 3nfan 1846 . . . . 5  |-  F/ x
( -.  A. z 
z  =  x  /\  -.  A. z  z  =  y )
5 nfnae 2044 . . . . . . . 8  |-  F/ z  -.  A. z  z  =  x
6 nfnae 2044 . . . . . . . 8  |-  F/ z  -.  A. z  z  =  y
75, 6nfan 1846 . . . . . . 7  |-  F/ z ( -.  A. z 
z  =  x  /\  -.  A. z  z  =  y )
8 nfcvf 2594 . . . . . . . . . 10  |-  ( -. 
A. z  z  =  x  ->  F/_ z x )
98adantr 452 . . . . . . . . 9  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/_ z x )
109nfcrd 2585 . . . . . . . 8  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  w  e.  x )
11 nfcvf 2594 . . . . . . . . . . 11  |-  ( -. 
A. z  z  =  y  ->  F/_ z y )
1211adantl 453 . . . . . . . . . 10  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/_ z y )
1312nfcrd 2585 . . . . . . . . 9  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  w  e.  y )
1413nfnd 1809 . . . . . . . 8  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  -.  w  e.  y
)
1510, 14nfimd 1827 . . . . . . 7  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z
( w  e.  x  ->  -.  w  e.  y ) )
16 elequ1 1728 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  x  <->  z  e.  x ) )
17 elequ1 1728 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w  e.  y  <->  z  e.  y ) )
1817notbid 286 . . . . . . . . 9  |-  ( w  =  z  ->  ( -.  w  e.  y  <->  -.  z  e.  y ) )
1916, 18imbi12d 312 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  x  ->  -.  w  e.  y )  <->  ( z  e.  x  ->  -.  z  e.  y ) ) )
2019a1i 11 . . . . . . 7  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( w  =  z  ->  ( ( w  e.  x  ->  -.  w  e.  y
)  <->  ( z  e.  x  ->  -.  z  e.  y ) ) ) )
217, 15, 20cbvald 1986 . . . . . 6  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( A. w ( w  e.  x  ->  -.  w  e.  y )  <->  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
2221anbi2d 685 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( (
x  e.  y  /\  A. w ( w  e.  x  ->  -.  w  e.  y ) )  <->  ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) ) ) )
234, 22exbid 1789 . . . 4  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( E. x ( x  e.  y  /\  A. w
( w  e.  x  ->  -.  w  e.  y ) )  <->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) ) )
241, 23syl5ib 211 . . 3  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) ) )
2524ex 424 . 2  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) ) ) )
26 axregndlem1 8477 . . 3  |-  ( A. x  x  =  z  ->  ( x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) ) )
2726aecoms 2036 . 2  |-  ( A. z  z  =  x  ->  ( x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) ) )
28 19.8a 1762 . . 3  |-  ( x  e.  y  ->  E. x  x  e.  y )
29 nfae 2042 . . . 4  |-  F/ x A. z  z  =  y
30 elirrv 7565 . . . . . . . . . 10  |-  -.  z  e.  z
31 elequ2 1730 . . . . . . . . . 10  |-  ( z  =  y  ->  (
z  e.  z  <->  z  e.  y ) )
3230, 31mtbii 294 . . . . . . . . 9  |-  ( z  =  y  ->  -.  z  e.  y )
3332sps 1770 . . . . . . . 8  |-  ( A. z  z  =  y  ->  -.  z  e.  y )
3433a1d 23 . . . . . . 7  |-  ( A. z  z  =  y  ->  ( z  e.  x  ->  -.  z  e.  y ) )
3534a5i 1807 . . . . . 6  |-  ( A. z  z  =  y  ->  A. z ( z  e.  x  ->  -.  z  e.  y )
)
3635anim2i 553 . . . . 5  |-  ( ( x  e.  y  /\  A. z  z  =  y )  ->  ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
3736expcom 425 . . . 4  |-  ( A. z  z  =  y  ->  ( x  e.  y  ->  ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) ) ) )
3829, 37eximd 1786 . . 3  |-  ( A. z  z  =  y  ->  ( E. x  x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) ) )
3928, 38syl5 30 . 2  |-  ( A. z  z  =  y  ->  ( x  e.  y  ->  E. x ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) ) ) )
4025, 27, 39pm2.61ii 159 1  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550   F/_wnfc 2559
This theorem is referenced by:  zfcndreg  8492  axregprim  25154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-reg 7560
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-v 2958  df-dif 3323  df-un 3325  df-nul 3629  df-sn 3820  df-pr 3821
  Copyright terms: Public domain W3C validator