MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrepnd Unicode version

Theorem axrepnd 8216
Description: A version of the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axrepnd  |-  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )

Proof of Theorem axrepnd
StepHypRef Expression
1 axrepndlem2 8215 . . . 4  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) )
2 nfnae 1896 . . . . . . 7  |-  F/ x  -.  A. x  x  =  y
3 nfnae 1896 . . . . . . 7  |-  F/ x  -.  A. x  x  =  z
42, 3nfan 1771 . . . . . 6  |-  F/ x
( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
5 nfnae 1896 . . . . . 6  |-  F/ x  -.  A. y  y  =  z
64, 5nfan 1771 . . . . 5  |-  F/ x
( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )
7 nfnae 1896 . . . . . . . . 9  |-  F/ z  -.  A. x  x  =  y
8 nfnae 1896 . . . . . . . . 9  |-  F/ z  -.  A. x  x  =  z
97, 8nfan 1771 . . . . . . . 8  |-  F/ z ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )
10 nfnae 1896 . . . . . . . 8  |-  F/ z  -.  A. y  y  =  z
119, 10nfan 1771 . . . . . . 7  |-  F/ z ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )
12 nfcvf 2441 . . . . . . . . . . . 12  |-  ( -. 
A. y  y  =  z  ->  F/_ y z )
1312adantl 452 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/_ y z )
14 nfcvf2 2442 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
1514ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/_ y x )
1613, 15nfeld 2434 . . . . . . . . . 10  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/ y 
z  e.  x )
1716nfrd 1743 . . . . . . . . 9  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( z  e.  x  ->  A. y 
z  e.  x ) )
18 sp 1716 . . . . . . . . 9  |-  ( A. y  z  e.  x  ->  z  e.  x )
1917, 18impbid1 194 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( z  e.  x  <->  A. y  z  e.  x ) )
20 nfcvf2 2442 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  z  ->  F/_ z x )
2120ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/_ z x )
22 nfcvf2 2442 . . . . . . . . . . . . . 14  |-  ( -. 
A. y  y  =  z  ->  F/_ z y )
2322adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/_ z y )
2421, 23nfeld 2434 . . . . . . . . . . . 12  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  F/ z  x  e.  y )
2524nfrd 1743 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( x  e.  y  ->  A. z  x  e.  y )
)
26 sp 1716 . . . . . . . . . . 11  |-  ( A. z  x  e.  y  ->  x  e.  y )
2725, 26impbid1 194 . . . . . . . . . 10  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( x  e.  y  <->  A. z  x  e.  y ) )
2827anbi1d 685 . . . . . . . . 9  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( (
x  e.  y  /\  A. y ph )  <->  ( A. z  x  e.  y  /\  A. y ph )
) )
296, 28exbid 1753 . . . . . . . 8  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( E. x ( x  e.  y  /\  A. y ph )  <->  E. x ( A. z  x  e.  y  /\  A. y ph )
) )
3019, 29bibi12d 312 . . . . . . 7  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( (
z  e.  x  <->  E. x
( x  e.  y  /\  A. y ph ) )  <->  ( A. y  z  e.  x  <->  E. x ( A. z  x  e.  y  /\  A. y ph ) ) ) )
3111, 30albid 1752 . . . . . 6  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) )  <->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
3231imbi2d 307 . . . . 5  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )  <->  ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y  z  e.  x  <->  E. x ( A. z  x  e.  y  /\  A. y ph ) ) ) ) )
336, 32exbid 1753 . . . 4  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  ( E. x ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )  <->  E. x ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) ) )
341, 33mpbid 201 . . 3  |-  ( ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  /\  -.  A. y  y  =  z )  ->  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
3534exp31 587 . 2  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  ( -.  A. y  y  =  z  ->  E. x ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) ) ) )
36 nfae 1894 . . . . 5  |-  F/ z A. x  x  =  y
37 nd2 8210 . . . . . . 7  |-  ( A. y  y  =  x  ->  -.  A. y  z  e.  x )
3837aecoms 1887 . . . . . 6  |-  ( A. x  x  =  y  ->  -.  A. y  z  e.  x )
39 nfa1 1756 . . . . . . 7  |-  F/ x A. x  x  =  y
40 nd3 8211 . . . . . . . 8  |-  ( A. x  x  =  y  ->  -.  A. z  x  e.  y )
4140intnanrd 883 . . . . . . 7  |-  ( A. x  x  =  y  ->  -.  ( A. z  x  e.  y  /\  A. y ph ) )
4239, 41nexd 1751 . . . . . 6  |-  ( A. x  x  =  y  ->  -.  E. x ( A. z  x  e.  y  /\  A. y ph ) )
4338, 422falsed 340 . . . . 5  |-  ( A. x  x  =  y  ->  ( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )
4436, 43alrimi 1745 . . . 4  |-  ( A. x  x  =  y  ->  A. z ( A. y  z  e.  x  <->  E. x ( A. z  x  e.  y  /\  A. y ph ) ) )
4544a1d 22 . . 3  |-  ( A. x  x  =  y  ->  ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
46 19.8a 1718 . . 3  |-  ( ( E. y A. z
( ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )  ->  E. x ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
4745, 46syl 15 . 2  |-  ( A. x  x  =  y  ->  E. x ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
48 nfae 1894 . . . . 5  |-  F/ z A. x  x  =  z
49 nd4 8212 . . . . . 6  |-  ( A. x  x  =  z  ->  -.  A. y  z  e.  x )
50 nfa1 1756 . . . . . . 7  |-  F/ x A. x  x  =  z
51 nd1 8209 . . . . . . . . 9  |-  ( A. z  z  =  x  ->  -.  A. z  x  e.  y )
5251aecoms 1887 . . . . . . . 8  |-  ( A. x  x  =  z  ->  -.  A. z  x  e.  y )
5352intnanrd 883 . . . . . . 7  |-  ( A. x  x  =  z  ->  -.  ( A. z  x  e.  y  /\  A. y ph ) )
5450, 53nexd 1751 . . . . . 6  |-  ( A. x  x  =  z  ->  -.  E. x ( A. z  x  e.  y  /\  A. y ph ) )
5549, 542falsed 340 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )
5648, 55alrimi 1745 . . . 4  |-  ( A. x  x  =  z  ->  A. z ( A. y  z  e.  x  <->  E. x ( A. z  x  e.  y  /\  A. y ph ) ) )
5756a1d 22 . . 3  |-  ( A. x  x  =  z  ->  ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
5857, 46syl 15 . 2  |-  ( A. x  x  =  z  ->  E. x ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
59 nfae 1894 . . . . 5  |-  F/ z A. y  y  =  z
60 nd1 8209 . . . . . 6  |-  ( A. y  y  =  z  ->  -.  A. y  z  e.  x )
61 nfae 1894 . . . . . . 7  |-  F/ x A. y  y  =  z
62 nd2 8210 . . . . . . . . 9  |-  ( A. z  z  =  y  ->  -.  A. z  x  e.  y )
6362aecoms 1887 . . . . . . . 8  |-  ( A. y  y  =  z  ->  -.  A. z  x  e.  y )
6463intnanrd 883 . . . . . . 7  |-  ( A. y  y  =  z  ->  -.  ( A. z  x  e.  y  /\  A. y ph ) )
6561, 64nexd 1751 . . . . . 6  |-  ( A. y  y  =  z  ->  -.  E. x ( A. z  x  e.  y  /\  A. y ph ) )
6660, 652falsed 340 . . . . 5  |-  ( A. y  y  =  z  ->  ( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )
6759, 66alrimi 1745 . . . 4  |-  ( A. y  y  =  z  ->  A. z ( A. y  z  e.  x  <->  E. x ( A. z  x  e.  y  /\  A. y ph ) ) )
6867a1d 22 . . 3  |-  ( A. y  y  =  z  ->  ( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
6968, 46syl 15 . 2  |-  ( A. y  y  =  z  ->  E. x ( E. y A. z (
ph  ->  z  =  y )  ->  A. z
( A. y  z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) ) )
7035, 47, 58, 69pm2.61iii 159 1  |-  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( A. y 
z  e.  x  <->  E. x
( A. z  x  e.  y  /\  A. y ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   F/_wnfc 2406
This theorem is referenced by:  zfcndrep  8236  axrepprim  24048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-dif 3155  df-un 3157  df-nul 3456  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator