Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsegcon Unicode version

Theorem axsegcon 24627
Description: Any segment  A B can be extended to a point  x such that  B x is congruent to  C D. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Distinct variable groups:    x, N    x, A    x, B    x, C    x, D

Proof of Theorem axsegcon
Dummy variables  k  p  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 24617 . . . . 5  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
21ex 423 . . . 4  |-  ( A  =  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
3 simprll 738 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
4 simprlr 739 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
5 simpl 443 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  =/=  B
)
6 simprr 733 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )
7 eqid 2296 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 )
8 eqid 2296 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 )
9 eqid 2296 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) )  =  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )
107, 8, 9axsegconlem8 24624 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
) )
117, 8axsegconlem7 24623 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1
) )
127, 8, 9axsegconlem10 24626 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
137, 8, 9axsegconlem9 24625 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
14 fveq1 5540 . . . . . . . . . . . . 13  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )
1514oveq2d 5890 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( t  x.  (
x `  i )
)  =  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
1615oveq2d 5890 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( x `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
1716eqeq2d 2307 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1817ralbidv 2576 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1914oveq2d 5890 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  -  (
x `  i )
)  =  ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
2019oveq1d 5889 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  ( ( ( B `  i
)  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2120sumeq2sdv 12193 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2221eqeq1d 2304 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
2318, 22anbi12d 691 . . . . . . . 8  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
24 oveq2 5882 . . . . . . . . . . . . 13  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
1  -  t )  =  ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) ) )
2524oveq1d 5889 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( 1  -  t
)  x.  ( A `
 i ) )  =  ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) ) )
26 oveq1 5881 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )  =  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )
2725, 26oveq12d 5892 . . . . . . . . . . 11  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
2827eqeq2d 2307 . . . . . . . . . 10  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
2928ralbidv 2576 . . . . . . . . 9  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  / 
( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
3029anbi1d 685 . . . . . . . 8  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )  <->  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
3123, 30rspc2ev 2905 . . . . . . 7  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
)  /\  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1 )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3210, 11, 12, 13, 31syl112anc 1186 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
333, 4, 5, 6, 32syl31anc 1185 . . . . 5  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3433ex 423 . . . 4  |-  ( A  =/=  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
352, 34pm2.61ine 2535 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
36 simpllr 735 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
37 simplll 734 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
38 simpr 447 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
39 brbtwn 24599 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
4036, 37, 38, 39syl3anc 1182 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( B  Btwn  <. A ,  x >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
41 simplrl 736 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
42 simplrr 737 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
43 brcgr 24600 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4436, 38, 41, 42, 43syl22anc 1183 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4540, 44anbi12d 691 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <-> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
46 r19.41v 2706 . . . . 5  |-  ( E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  <->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
4745, 46syl6bbr 254 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. t  e.  (
0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
4847rexbidva 2573 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
4935, 48mpbird 223 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
50493adant1 973 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   <.cop 3656   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   [,]cicc 10675   ...cfz 10798   ^cexp 11120   sqrcsqr 11734   sum_csu 12174   EEcee 24588    Btwn cbtwn 24589  Cgrccgr 24590
This theorem is referenced by:  cgrtriv  24697  segconeu  24706  btwntriv2  24707  btwnouttr2  24717  btwndiff  24722  ifscgr  24739  cgrxfr  24750  lineext  24771  btwnconn1lem13  24794  btwnconn1lem14  24795  segcon2  24800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-btwn 24592  df-cgr 24593
  Copyright terms: Public domain W3C validator