Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsegcon Structured version   Unicode version

Theorem axsegcon 25897
Description: Any segment  A B can be extended to a point  x such that  B x is congruent to  C D. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Distinct variable groups:    x, N    x, A    x, B    x, C    x, D

Proof of Theorem axsegcon
Dummy variables  k  p  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 25887 . . . . 5  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
21ex 425 . . . 4  |-  ( A  =  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
3 simprll 740 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
4 simprlr 741 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
5 simpl 445 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  =/=  B
)
6 simprr 735 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )
7 eqid 2442 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 )
8 eqid 2442 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 )
9 eqid 2442 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) )  =  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )
107, 8, 9axsegconlem8 25894 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
) )
117, 8axsegconlem7 25893 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1
) )
127, 8, 9axsegconlem10 25896 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
137, 8, 9axsegconlem9 25895 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
14 fveq1 5756 . . . . . . . . . . . . 13  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )
1514oveq2d 6126 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( t  x.  (
x `  i )
)  =  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
1615oveq2d 6126 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( x `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
1716eqeq2d 2453 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1817ralbidv 2731 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1914oveq2d 6126 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  -  (
x `  i )
)  =  ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
2019oveq1d 6125 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  ( ( ( B `  i
)  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2120sumeq2sdv 12529 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2221eqeq1d 2450 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
2318, 22anbi12d 693 . . . . . . . 8  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
24 oveq2 6118 . . . . . . . . . . . . 13  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
1  -  t )  =  ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) ) )
2524oveq1d 6125 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( 1  -  t
)  x.  ( A `
 i ) )  =  ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) ) )
26 oveq1 6117 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )  =  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )
2725, 26oveq12d 6128 . . . . . . . . . . 11  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
2827eqeq2d 2453 . . . . . . . . . 10  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
2928ralbidv 2731 . . . . . . . . 9  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  / 
( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
3029anbi1d 687 . . . . . . . 8  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )  <->  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
3123, 30rspc2ev 3066 . . . . . . 7  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
)  /\  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1 )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3210, 11, 12, 13, 31syl112anc 1189 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
333, 4, 5, 6, 32syl31anc 1188 . . . . 5  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3433ex 425 . . . 4  |-  ( A  =/=  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
352, 34pm2.61ine 2686 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
36 simpllr 737 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
37 simplll 736 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
38 simpr 449 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
39 brbtwn 25869 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
4036, 37, 38, 39syl3anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( B  Btwn  <. A ,  x >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
41 simplrl 738 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
42 simplrr 739 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
43 brcgr 25870 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4436, 38, 41, 42, 43syl22anc 1186 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4540, 44anbi12d 693 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <-> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
46 r19.41v 2867 . . . . 5  |-  ( E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  <->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
4745, 46syl6bbr 256 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. t  e.  (
0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
4847rexbidva 2728 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
4935, 48mpbird 225 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
50493adant1 976 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   A.wral 2711   E.wrex 2712   <.cop 3841   class class class wbr 4237    e. cmpt 4291   ` cfv 5483  (class class class)co 6110   0cc0 9021   1c1 9022    + caddc 9024    x. cmul 9026    - cmin 9322    / cdiv 9708   NNcn 10031   2c2 10080   [,]cicc 10950   ...cfz 11074   ^cexp 11413   sqrcsqr 12069   sum_csu 12510   EEcee 25858    Btwn cbtwn 25859  Cgrccgr 25860
This theorem is referenced by:  cgrtriv  25967  segconeu  25976  btwntriv2  25977  btwnouttr2  25987  btwndiff  25992  ifscgr  26009  cgrxfr  26020  lineext  26041  btwnconn1lem13  26064  btwnconn1lem14  26065  segcon2  26070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511  df-ee 25861  df-btwn 25862  df-cgr 25863
  Copyright terms: Public domain W3C validator