Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsegconlem9 Unicode version

Theorem axsegconlem9 25571
Description: Lemma for axsegcon 25573. Show that  B F is congruent to  C D. (Contributed by Scott Fenton, 19-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
axsegconlem7.2  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
axsegconlem8.3  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
Assertion
Ref Expression
axsegconlem9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
Distinct variable groups:    A, p    B, p    C, p    D, p    N, p    A, i, k    B, i, k    C, i, k    D, i, k    i, N, k    S, i, k    T, i, k    i, p
Allowed substitution hints:    S( p)    T( p)    F( i, k, p)

Proof of Theorem axsegconlem9
StepHypRef Expression
1 fveq2 5661 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
21oveq2d 6029 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )
3 fveq2 5661 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( A `  k )  =  ( A `  i ) )
43oveq2d 6029 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( sqr `  T
)  x.  ( A `
 k ) )  =  ( ( sqr `  T )  x.  ( A `  i )
) )
52, 4oveq12d 6031 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 k ) )  -  ( ( sqr `  T )  x.  ( A `  k )
) )  =  ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) ) )
65oveq1d 6028 . . . . . . . . 9  |-  ( k  =  i  ->  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  k )
)  -  ( ( sqr `  T )  x.  ( A `  k ) ) )  /  ( sqr `  S
) )  =  ( ( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) )
7 axsegconlem8.3 . . . . . . . . 9  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
8 ovex 6038 . . . . . . . . 9  |-  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) )  e.  _V
96, 7, 8fvmpt 5738 . . . . . . . 8  |-  ( i  e.  ( 1 ... N )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
109adantl 453 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
1110oveq2d 6029 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( F `
 i ) )  =  ( ( B `
 i )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) ) )
12 axsegconlem2.1 . . . . . . . . . . . . 13  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
1312axsegconlem4 25566 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sqr `  S
)  e.  RR )
14133adant3 977 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  e.  RR )
1514ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  RR )
16 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
17 fveere 25547 . . . . . . . . . . 11  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
1816, 17sylan 458 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
1915, 18remulcld 9042 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( B `
 i ) )  e.  RR )
2019recnd 9040 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( B `
 i ) )  e.  CC )
21 axsegconlem7.2 . . . . . . . . . . . . . 14  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
2221axsegconlem4 25566 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( sqr `  T
)  e.  RR )
23 readdcl 8999 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( ( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2414, 22, 23syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2524adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2625, 18remulcld 9042 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  RR )
2722ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  RR )
28 simpl1 960 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
29 fveere 25547 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
3028, 29sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
3127, 30remulcld 9042 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  RR )
3226, 31resubcld 9390 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  RR )
3332recnd 9040 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  CC )
3415recnd 9040 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  CC )
3512axsegconlem6 25568 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <  ( sqr `  S
) )
3635gt0ne0d 9516 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  =/=  0 )
3736ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  =/=  0 )
3820, 33, 34, 37divsubdird 9754 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  /  ( sqr `  S ) )  =  ( ( ( ( sqr `  S
)  x.  ( B `
 i ) )  /  ( sqr `  S
) )  -  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) ) )
3926recnd 9040 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  CC )
4031recnd 9040 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  CC )
4120, 39, 40subsubd 9364 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  =  ( ( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
4227recnd 9040 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  CC )
4318renegcld 9389 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u ( B `  i )  e.  RR )
4443recnd 9040 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u ( B `  i )  e.  CC )
4530recnd 9040 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
4642, 44, 45adddid 9038 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( -u ( B `  i )  +  ( A `  i ) ) )  =  ( ( ( sqr `  T )  x.  -u ( B `  i ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
4744, 45addcomd 9193 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( B `  i
)  +  ( A `
 i ) )  =  ( ( A `
 i )  + 
-u ( B `  i ) ) )
4818recnd 9040 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
4945, 48negsubd 9342 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  +  -u ( B `  i )
)  =  ( ( A `  i )  -  ( B `  i ) ) )
5047, 49eqtrd 2412 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( B `  i
)  +  ( A `
 i ) )  =  ( ( A `
 i )  -  ( B `  i ) ) )
5150oveq2d 6029 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( -u ( B `  i )  +  ( A `  i ) ) )  =  ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) )
5225recnd 9040 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  CC )
5352, 34negsubdi2d 9352 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( ( sqr `  S )  -  ( ( sqr `  S )  +  ( sqr `  T ) ) ) )
5434, 42pncan2d 9338 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( sqr `  T ) )
5554negeqd 9225 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  -u ( sqr `  T ) )
5653, 55eqtr3d 2414 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  = 
-u ( sqr `  T
) )
5756oveq1d 6028 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( B `  i
) )  =  (
-u ( sqr `  T
)  x.  ( B `
 i ) ) )
5834, 52, 48subdird 9415 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( B `  i
) )  =  ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) ) )
59 mulneg12 9397 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  T
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( -u ( sqr `  T
)  x.  ( B `
 i ) )  =  ( ( sqr `  T )  x.  -u ( B `  i )
) )
6042, 48, 59syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( sqr `  T
)  x.  ( B `
 i ) )  =  ( ( sqr `  T )  x.  -u ( B `  i )
) )
6157, 58, 603eqtr3rd 2421 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  -u ( B `  i )
)  =  ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) ) )
6261oveq1d 6028 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  -u ( B `  i )
)  +  ( ( sqr `  T )  x.  ( A `  i ) ) )  =  ( ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
6346, 51, 623eqtr3rd 2421 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) )  =  ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) ) )
6441, 63eqtrd 2412 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  =  ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) )
6564oveq1d 6028 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  /  ( sqr `  S ) )  =  ( ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) )  /  ( sqr `  S ) ) )
6648, 34, 37divcan3d 9720 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  /  ( sqr `  S
) )  =  ( B `  i ) )
6766oveq1d 6028 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  /  ( sqr `  S ) )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )  =  ( ( B `
 i )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) ) )
6838, 65, 673eqtr3rd 2421 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) ) )  =  ( ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  /  ( sqr `  S
) ) )
6911, 68eqtrd 2412 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( F `
 i ) )  =  ( ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) )  /  ( sqr `  S ) ) )
7069oveq1d 6028 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  ( F `  i )
) ^ 2 )  =  ( ( ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  /  ( sqr `  S
) ) ^ 2 ) )
7130, 18resubcld 9390 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  RR )
7227, 71remulcld 9042 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  e.  RR )
7372recnd 9040 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  e.  CC )
7473, 34, 37sqdivd 11456 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) )  /  ( sqr `  S ) ) ^
2 )  =  ( ( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) ^ 2 )  /  ( ( sqr `  S ) ^ 2 ) ) )
7571recnd 9040 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  CC )
7642, 75sqmuld 11455 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) ^ 2 )  =  ( ( ( sqr `  T ) ^ 2 )  x.  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) ) )
7721axsegconlem2 25564 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  T  e.  RR )
7877ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  T  e.  RR )
7921axsegconlem3 25565 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
0  <_  T )
8079ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  0  <_  T )
81 resqrth 11981 . . . . . . . 8  |-  ( ( T  e.  RR  /\  0  <_  T )  -> 
( ( sqr `  T
) ^ 2 )  =  T )
8278, 80, 81syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
) ^ 2 )  =  T )
8382oveq1d 6028 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
) ^ 2 )  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  =  ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
8476, 83eqtrd 2412 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) ^ 2 )  =  ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
8512axsegconlem2 25564 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  S  e.  RR )
8612axsegconlem3 25565 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
0  <_  S )
87 resqrth 11981 . . . . . . . 8  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
) ^ 2 )  =  S )
8885, 86, 87syl2anc 643 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( sqr `  S
) ^ 2 )  =  S )
89883adant3 977 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  (
( sqr `  S
) ^ 2 )  =  S )
9089ad2antrr 707 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
) ^ 2 )  =  S )
9184, 90oveq12d 6031 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) ^ 2 )  /  ( ( sqr `  S ) ^ 2 ) )  =  ( ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S ) )
9270, 74, 913eqtrd 2416 . . 3  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  ( F `  i )
) ^ 2 )  =  ( ( T  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  /  S ) )
9392sumeq2dv 12417 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S ) )
94 fzfid 11232 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
1 ... N )  e. 
Fin )
9577adantl 453 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  T  e.  RR )
9695recnd 9040 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  T  e.  CC )
9771resqcld 11469 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
9897recnd 9040 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  CC )
9994, 96, 98fsummulc2 12487 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  = 
sum_ i  e.  ( 1 ... N ) ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
10099oveq1d 6028 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  ( sum_ i  e.  ( 1 ... N
) ( T  x.  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  /  S ) )
101 fveq2 5661 . . . . . . . . 9  |-  ( p  =  i  ->  ( C `  p )  =  ( C `  i ) )
102 fveq2 5661 . . . . . . . . 9  |-  ( p  =  i  ->  ( D `  p )  =  ( D `  i ) )
103101, 102oveq12d 6031 . . . . . . . 8  |-  ( p  =  i  ->  (
( C `  p
)  -  ( D `
 p ) )  =  ( ( C `
 i )  -  ( D `  i ) ) )
104103oveq1d 6028 . . . . . . 7  |-  ( p  =  i  ->  (
( ( C `  p )  -  ( D `  p )
) ^ 2 )  =  ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
105104cbvsumv 12410 . . . . . 6  |-  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )
10621, 105eqtri 2400 . . . . 5  |-  T  = 
sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )
107 fveq2 5661 . . . . . . . . 9  |-  ( i  =  p  ->  ( A `  i )  =  ( A `  p ) )
108 fveq2 5661 . . . . . . . . 9  |-  ( i  =  p  ->  ( B `  i )  =  ( B `  p ) )
109107, 108oveq12d 6031 . . . . . . . 8  |-  ( i  =  p  ->  (
( A `  i
)  -  ( B `
 i ) )  =  ( ( A `
 p )  -  ( B `  p ) ) )
110109oveq1d 6028 . . . . . . 7  |-  ( i  =  p  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )
111110cbvsumv 12410 . . . . . 6  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 )
112111, 12eqtr4i 2403 . . . . 5  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  S
113106, 112oveq12i 6025 . . . 4  |-  ( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  =  ( sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  x.  S )
114 eqid 2380 . . . . . . . . . 10  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )
115114axsegconlem2 25564 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
1161153adant3 977 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  e.  RR )
117116adantr 452 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  e.  RR )
11895, 117remulcld 9042 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  e.  RR )
119118recnd 9040 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  e.  CC )
120 eqid 2380 . . . . . . . 8  |-  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )
121120axsegconlem2 25564 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  e.  RR )
122121adantl 453 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  e.  RR )
123122recnd 9040 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  e.  CC )
124853adant3 977 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  S  e.  RR )
125124adantr 452 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  e.  RR )
126125recnd 9040 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  e.  CC )
127863adant3 977 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <_  S )
128 sqr00 11989 . . . . . . . . 9  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
)  =  0  <->  S  =  0 ) )
129128necon3bid 2578 . . . . . . . 8  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
)  =/=  0  <->  S  =/=  0 ) )
130124, 127, 129syl2anc 643 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  (
( sqr `  S
)  =/=  0  <->  S  =/=  0 ) )
13136, 130mpbid 202 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  S  =/=  0 )
132131adantr 452 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  =/=  0 )
133119, 123, 126, 132divmul3d 9749 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( ( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  <-> 
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  =  ( sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  x.  S ) ) )
134113, 133mpbiri 225 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
13578, 97remulcld 9042 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( T  x.  ( (
( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  e.  RR )
136135recnd 9040 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( T  x.  ( (
( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  e.  CC )
13794, 126, 136, 132fsumdivc 12489 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( T  x.  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  /  S )  = 
sum_ i  e.  ( 1 ... N ) ( ( T  x.  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  /  S ) )
138100, 134, 1373eqtr3rd 2421 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( T  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
13993, 138eqtrd 2412 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   class class class wbr 4146    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    <_ cle 9047    - cmin 9216   -ucneg 9217    / cdiv 9602   2c2 9974   ...cfz 10968   ^cexp 11302   sqrcsqr 11958   sum_csu 12399   EEcee 25534
This theorem is referenced by:  axsegcon  25573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-ico 10847  df-fz 10969  df-fzo 11059  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-sum 12400  df-ee 25537
  Copyright terms: Public domain W3C validator