MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunndlem1 Unicode version

Theorem axunndlem1 8217
Description: Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axunndlem1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Distinct variable groups:    x, y    x, z

Proof of Theorem axunndlem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 en2lp 7317 . . . . . . . 8  |-  -.  (
y  e.  x  /\  x  e.  y )
2 elequ2 1689 . . . . . . . . 9  |-  ( y  =  z  ->  (
x  e.  y  <->  x  e.  z ) )
32anbi2d 684 . . . . . . . 8  |-  ( y  =  z  ->  (
( y  e.  x  /\  x  e.  y
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
41, 3mtbii 293 . . . . . . 7  |-  ( y  =  z  ->  -.  ( y  e.  x  /\  x  e.  z
) )
54sps 1739 . . . . . 6  |-  ( A. y  y  =  z  ->  -.  ( y  e.  x  /\  x  e.  z ) )
65nexdv 1857 . . . . 5  |-  ( A. y  y  =  z  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
76pm2.21d 98 . . . 4  |-  ( A. y  y  =  z  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
87a5i 1758 . . 3  |-  ( A. y  y  =  z  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
9 19.8a 1718 . . 3  |-  ( A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
108, 9syl 15 . 2  |-  ( A. y  y  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
11 zfun 4513 . . 3  |-  E. x A. w ( E. x
( w  e.  x  /\  x  e.  z
)  ->  w  e.  x )
12 nfnae 1896 . . . . 5  |-  F/ y  -.  A. y  y  =  z
13 nfnae 1896 . . . . . . 7  |-  F/ x  -.  A. y  y  =  z
14 nfvd 1606 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  F/ y  w  e.  x )
15 nfcvd 2420 . . . . . . . . 9  |-  ( -. 
A. y  y  =  z  ->  F/_ y x )
16 nfcvf 2441 . . . . . . . . 9  |-  ( -. 
A. y  y  =  z  ->  F/_ y z )
1715, 16nfeld 2434 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  F/ y  x  e.  z )
1814, 17nfand 1763 . . . . . . 7  |-  ( -. 
A. y  y  =  z  ->  F/ y
( w  e.  x  /\  x  e.  z
) )
1913, 18nfexd 1776 . . . . . 6  |-  ( -. 
A. y  y  =  z  ->  F/ y E. x ( w  e.  x  /\  x  e.  z ) )
2019, 14nfimd 1761 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  F/ y
( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x ) )
21 elequ1 1687 . . . . . . . . 9  |-  ( w  =  y  ->  (
w  e.  x  <->  y  e.  x ) )
2221anbi1d 685 . . . . . . . 8  |-  ( w  =  y  ->  (
( w  e.  x  /\  x  e.  z
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
2322exbidv 1612 . . . . . . 7  |-  ( w  =  y  ->  ( E. x ( w  e.  x  /\  x  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
2423, 21imbi12d 311 . . . . . 6  |-  ( w  =  y  ->  (
( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <-> 
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
2524a1i 10 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  ( w  =  y  ->  ( ( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) ) )
2612, 20, 25cbvald 1948 . . . 4  |-  ( -. 
A. y  y  =  z  ->  ( A. w ( E. x
( w  e.  x  /\  x  e.  z
)  ->  w  e.  x )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
2726exbidv 1612 . . 3  |-  ( -. 
A. y  y  =  z  ->  ( E. x A. w ( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) ) )
2811, 27mpbii 202 . 2  |-  ( -. 
A. y  y  =  z  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
2910, 28pm2.61i 156 1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684
This theorem is referenced by:  axunnd  8218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-eprel 4305  df-fr 4352
  Copyright terms: Public domain W3C validator