MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunndlem1 Unicode version

Theorem axunndlem1 8233
Description: Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axunndlem1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Distinct variable groups:    x, y    x, z

Proof of Theorem axunndlem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 en2lp 7333 . . . . . . . 8  |-  -.  (
y  e.  x  /\  x  e.  y )
2 elequ2 1701 . . . . . . . . 9  |-  ( y  =  z  ->  (
x  e.  y  <->  x  e.  z ) )
32anbi2d 684 . . . . . . . 8  |-  ( y  =  z  ->  (
( y  e.  x  /\  x  e.  y
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
41, 3mtbii 293 . . . . . . 7  |-  ( y  =  z  ->  -.  ( y  e.  x  /\  x  e.  z
) )
54sps 1751 . . . . . 6  |-  ( A. y  y  =  z  ->  -.  ( y  e.  x  /\  x  e.  z ) )
65nexdv 1869 . . . . 5  |-  ( A. y  y  =  z  ->  -.  E. x ( y  e.  x  /\  x  e.  z )
)
76pm2.21d 98 . . . 4  |-  ( A. y  y  =  z  ->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
87a5i 1770 . . 3  |-  ( A. y  y  =  z  ->  A. y ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
9 19.8a 1730 . . 3  |-  ( A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
108, 9syl 15 . 2  |-  ( A. y  y  =  z  ->  E. x A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) )
11 zfun 4529 . . 3  |-  E. x A. w ( E. x
( w  e.  x  /\  x  e.  z
)  ->  w  e.  x )
12 nfnae 1909 . . . . 5  |-  F/ y  -.  A. y  y  =  z
13 nfnae 1909 . . . . . . 7  |-  F/ x  -.  A. y  y  =  z
14 nfvd 1610 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  F/ y  w  e.  x )
15 nfcvd 2433 . . . . . . . . 9  |-  ( -. 
A. y  y  =  z  ->  F/_ y x )
16 nfcvf 2454 . . . . . . . . 9  |-  ( -. 
A. y  y  =  z  ->  F/_ y z )
1715, 16nfeld 2447 . . . . . . . 8  |-  ( -. 
A. y  y  =  z  ->  F/ y  x  e.  z )
1814, 17nfand 1775 . . . . . . 7  |-  ( -. 
A. y  y  =  z  ->  F/ y
( w  e.  x  /\  x  e.  z
) )
1913, 18nfexd 1788 . . . . . 6  |-  ( -. 
A. y  y  =  z  ->  F/ y E. x ( w  e.  x  /\  x  e.  z ) )
2019, 14nfimd 1773 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  F/ y
( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x ) )
21 elequ1 1699 . . . . . . . . 9  |-  ( w  =  y  ->  (
w  e.  x  <->  y  e.  x ) )
2221anbi1d 685 . . . . . . . 8  |-  ( w  =  y  ->  (
( w  e.  x  /\  x  e.  z
)  <->  ( y  e.  x  /\  x  e.  z ) ) )
2322exbidv 1616 . . . . . . 7  |-  ( w  =  y  ->  ( E. x ( w  e.  x  /\  x  e.  z )  <->  E. x
( y  e.  x  /\  x  e.  z
) ) )
2423, 21imbi12d 311 . . . . . 6  |-  ( w  =  y  ->  (
( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <-> 
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
2524a1i 10 . . . . 5  |-  ( -. 
A. y  y  =  z  ->  ( w  =  y  ->  ( ( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <->  ( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) ) )
2612, 20, 25cbvald 1961 . . . 4  |-  ( -. 
A. y  y  =  z  ->  ( A. w ( E. x
( w  e.  x  /\  x  e.  z
)  ->  w  e.  x )  <->  A. y
( E. x ( y  e.  x  /\  x  e.  z )  ->  y  e.  x ) ) )
2726exbidv 1616 . . 3  |-  ( -. 
A. y  y  =  z  ->  ( E. x A. w ( E. x ( w  e.  x  /\  x  e.  z )  ->  w  e.  x )  <->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) ) )
2811, 27mpbii 202 . 2  |-  ( -. 
A. y  y  =  z  ->  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x ) )
2910, 28pm2.61i 156 1  |-  E. x A. y ( E. x
( y  e.  x  /\  x  e.  z
)  ->  y  e.  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696
This theorem is referenced by:  axunnd  8234
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-eprel 4321  df-fr 4368
  Copyright terms: Public domain W3C validator