Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Unicode version

Theorem ballotlem2 24751
Description: The probability that the first vote picked in a count is a B (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
Assertion
Ref Expression
ballotlem2  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( N  /  ( M  +  N )
)
Distinct variable groups:    M, c    N, c    O, c, x
Allowed substitution hints:    P( x, c)    M( x)    N( x)

Proof of Theorem ballotlem2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3430 . . . . 5  |-  { c  e.  O  |  -.  1  e.  c }  C_  O
2 ballotth.m . . . . . . 7  |-  M  e.  NN
3 ballotth.n . . . . . . 7  |-  N  e.  NN
4 ballotth.o . . . . . . 7  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
52, 3, 4ballotlemoex 24748 . . . . . 6  |-  O  e. 
_V
65elpw2 4367 . . . . 5  |-  ( { c  e.  O  |  -.  1  e.  c }  e.  ~P O  <->  { c  e.  O  |  -.  1  e.  c }  C_  O )
71, 6mpbir 202 . . . 4  |-  { c  e.  O  |  -.  1  e.  c }  e.  ~P O
8 fveq2 5731 . . . . . 6  |-  ( x  =  { c  e.  O  |  -.  1  e.  c }  ->  ( # `
 x )  =  ( # `  {
c  e.  O  |  -.  1  e.  c } ) )
98oveq1d 6099 . . . . 5  |-  ( x  =  { c  e.  O  |  -.  1  e.  c }  ->  (
( # `  x )  /  ( # `  O
) )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) ) )
10 ballotth.p . . . . 5  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
11 ovex 6109 . . . . 5  |-  ( (
# `  { c  e.  O  |  -.  1  e.  c }
)  /  ( # `  O ) )  e. 
_V
129, 10, 11fvmpt 5809 . . . 4  |-  ( { c  e.  O  |  -.  1  e.  c }  e.  ~P O  ->  ( P `  {
c  e.  O  |  -.  1  e.  c } )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) ) )
137, 12ax-mp 5 . . 3  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) )
14 2nn 10138 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN
15 nnge1 10031 . . . . . . . . . . . . . . . . 17  |-  ( 2  e.  NN  ->  1  <_  2 )
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16  |-  1  <_  2
17 1z 10316 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
18 2z 10317 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
19 eluz 10504 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  e.  (
ZZ>= `  1 )  <->  1  <_  2 ) )
2017, 18, 19mp2an 655 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  ( ZZ>= `  1
)  <->  1  <_  2
)
2116, 20mpbir 202 . . . . . . . . . . . . . . 15  |-  2  e.  ( ZZ>= `  1 )
22 fzss1 11096 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( M  +  N ) )  C_  ( 1 ... ( M  +  N )
) )
2321, 22ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 ... ( M  +  N ) )  C_  ( 1 ... ( M  +  N )
)
24 sspwb 4416 . . . . . . . . . . . . . 14  |-  ( ( 2 ... ( M  +  N ) ) 
C_  ( 1 ... ( M  +  N
) )  <->  ~P (
2 ... ( M  +  N ) )  C_  ~P ( 1 ... ( M  +  N )
) )
2523, 24mpbi 201 . . . . . . . . . . . . 13  |-  ~P (
2 ... ( M  +  N ) )  C_  ~P ( 1 ... ( M  +  N )
)
2625sseli 3346 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  -> 
c  e.  ~P (
1 ... ( M  +  N ) ) )
27 1lt2 10147 . . . . . . . . . . . . . . . . 17  |-  1  <  2
28 1re 9095 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
29 2re 10074 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
3028, 29ltnlei 9199 . . . . . . . . . . . . . . . . 17  |-  ( 1  <  2  <->  -.  2  <_  1 )
3127, 30mpbi 201 . . . . . . . . . . . . . . . 16  |-  -.  2  <_  1
32 elfzle1 11065 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ( 2 ... ( M  +  N
) )  ->  2  <_  1 )
3331, 32mto 170 . . . . . . . . . . . . . . 15  |-  -.  1  e.  ( 2 ... ( M  +  N )
)
34 elelpwi 3811 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )  ->  1  e.  ( 2 ... ( M  +  N ) ) )
3533, 34mto 170 . . . . . . . . . . . . . 14  |-  -.  (
1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )
36 ancom 439 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )  <-> 
( c  e.  ~P ( 2 ... ( M  +  N )
)  /\  1  e.  c ) )
3735, 36mtbi 291 . . . . . . . . . . . . 13  |-  -.  (
c  e.  ~P (
2 ... ( M  +  N ) )  /\  1  e.  c )
3837imnani 414 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  ->  -.  1  e.  c
)
3926, 38jca 520 . . . . . . . . . . 11  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  -> 
( c  e.  ~P ( 1 ... ( M  +  N )
)  /\  -.  1  e.  c ) )
40 ssin 3565 . . . . . . . . . . . . 13  |-  ( ( c  C_  ( 1 ... ( M  +  N ) )  /\  c  C_  { i  |  -.  i  =  1 } )  <->  c  C_  ( ( 1 ... ( M  +  N
) )  i^i  {
i  |  -.  i  =  1 } ) )
41 1p1e2 10099 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  +  1 )  =  2
42 nnge1 10031 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN  ->  1  <_  M )
432, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  <_  M
44 nnge1 10031 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  1  <_  N )
453, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  <_  N
462nnrei 10014 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  M  e.  RR
473nnrei 10014 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  N  e.  RR
4828, 28, 46, 47le2addi 9595 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  <_  M  /\  1  <_  N )  -> 
( 1  +  1 )  <_  ( M  +  N ) )
4943, 45, 48mp2an 655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  +  1 )  <_ 
( M  +  N
)
5041, 49eqbrtrri 4236 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  <_  ( M  +  N
)
5146, 47readdcli 9108 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  +  N )  e.  RR
5228, 29, 51letri 9207 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  <_  2  /\  2  <_  ( M  +  N ) )  -> 
1  <_  ( M  +  N ) )
5316, 50, 52mp2an 655 . . . . . . . . . . . . . . . . . . . . 21  |-  1  <_  ( M  +  N
)
54 nnaddcl 10027 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
552, 3, 54mp2an 655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  +  N )  e.  NN
5655nnzi 10310 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  +  N )  e.  ZZ
57 eluz 10504 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( M  +  N )  e.  ( ZZ>= `  1 )  <->  1  <_  ( M  +  N ) ) )
5817, 56, 57mp2an 655 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  +  N )  e.  ( ZZ>= `  1
)  <->  1  <_  ( M  +  N )
)
5953, 58mpbir 202 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  +  N )  e.  ( ZZ>= `  1 )
60 elfzp12 11131 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  +  N )  e.  ( ZZ>= `  1
)  ->  ( i  e.  ( 1 ... ( M  +  N )
)  <->  ( i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) ) ) )
6159, 60ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1 ... ( M  +  N
) )  <->  ( i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) ) )
6261biimpi 188 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... ( M  +  N
) )  ->  (
i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N ) ) ) )
6362orcanai 881 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1
)  ->  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) )
6441oveq1i 6094 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  +  1 ) ... ( M  +  N ) )  =  ( 2 ... ( M  +  N )
)
6563, 64syl6eleq 2528 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1
)  ->  i  e.  ( 2 ... ( M  +  N )
) )
6665ss2abi 3417 . . . . . . . . . . . . . . 15  |-  { i  |  ( i  e.  ( 1 ... ( M  +  N )
)  /\  -.  i  =  1 ) } 
C_  { i  |  i  e.  ( 2 ... ( M  +  N ) ) }
67 inab 3611 . . . . . . . . . . . . . . . 16  |-  ( { i  |  i  e.  ( 1 ... ( M  +  N )
) }  i^i  {
i  |  -.  i  =  1 } )  =  { i  |  ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1 ) }
68 abid2 2555 . . . . . . . . . . . . . . . . 17  |-  { i  |  i  e.  ( 1 ... ( M  +  N ) ) }  =  ( 1 ... ( M  +  N ) )
6968ineq1i 3540 . . . . . . . . . . . . . . . 16  |-  ( { i  |  i  e.  ( 1 ... ( M  +  N )
) }  i^i  {
i  |  -.  i  =  1 } )  =  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)
7067, 69eqtr3i 2460 . . . . . . . . . . . . . . 15  |-  { i  |  ( i  e.  ( 1 ... ( M  +  N )
)  /\  -.  i  =  1 ) }  =  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)
71 abid2 2555 . . . . . . . . . . . . . . 15  |-  { i  |  i  e.  ( 2 ... ( M  +  N ) ) }  =  ( 2 ... ( M  +  N ) )
7266, 70, 713sstr3i 3388 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( M  +  N ) )  i^i  { i  |  -.  i  =  1 } )  C_  (
2 ... ( M  +  N ) )
73 sstr 3358 . . . . . . . . . . . . . 14  |-  ( ( c  C_  ( (
1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  /\  ( (
1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  C_  ( 2 ... ( M  +  N ) ) )  ->  c  C_  (
2 ... ( M  +  N ) ) )
7472, 73mpan2 654 . . . . . . . . . . . . 13  |-  ( c 
C_  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  ->  c  C_  ( 2 ... ( M  +  N )
) )
7540, 74sylbi 189 . . . . . . . . . . . 12  |-  ( ( c  C_  ( 1 ... ( M  +  N ) )  /\  c  C_  { i  |  -.  i  =  1 } )  ->  c  C_  ( 2 ... ( M  +  N )
) )
76 vex 2961 . . . . . . . . . . . . . 14  |-  c  e. 
_V
7776elpw 3807 . . . . . . . . . . . . 13  |-  ( c  e.  ~P ( 1 ... ( M  +  N ) )  <->  c  C_  ( 1 ... ( M  +  N )
) )
78 ssab 3415 . . . . . . . . . . . . . 14  |-  ( c 
C_  { i  |  -.  i  =  1 }  <->  A. i ( i  e.  c  ->  -.  i  =  1 ) )
79 df-ex 1552 . . . . . . . . . . . . . . . . 17  |-  ( E. i ( i  =  1  /\  i  e.  c )  <->  -.  A. i  -.  ( i  =  1  /\  i  e.  c ) )
8079bicomi 195 . . . . . . . . . . . . . . . 16  |-  ( -. 
A. i  -.  (
i  =  1  /\  i  e.  c )  <->  E. i ( i  =  1  /\  i  e.  c ) )
8180con1bii 323 . . . . . . . . . . . . . . 15  |-  ( -. 
E. i ( i  =  1  /\  i  e.  c )  <->  A. i  -.  ( i  =  1  /\  i  e.  c ) )
82 df-clel 2434 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  c  <->  E. i
( i  =  1  /\  i  e.  c ) )
8382notbii 289 . . . . . . . . . . . . . . 15  |-  ( -.  1  e.  c  <->  -.  E. i
( i  =  1  /\  i  e.  c ) )
84 imnan 413 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  c  ->  -.  i  =  1
)  <->  -.  ( i  e.  c  /\  i  =  1 ) )
8584albii 1576 . . . . . . . . . . . . . . . 16  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  A. i  -.  ( i  e.  c  /\  i  =  1 ) )
86 ancom 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =  1  /\  i  e.  c )  <-> 
( i  e.  c  /\  i  =  1 ) )
8786notbii 289 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( i  =  1  /\  i  e.  c )  <->  -.  ( i  e.  c  /\  i  =  1 ) )
8887albii 1576 . . . . . . . . . . . . . . . 16  |-  ( A. i  -.  ( i  =  1  /\  i  e.  c )  <->  A. i  -.  ( i  e.  c  /\  i  =  1 ) )
8985, 88bitr4i 245 . . . . . . . . . . . . . . 15  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  A. i  -.  ( i  =  1  /\  i  e.  c ) )
9081, 83, 893bitr4ri 271 . . . . . . . . . . . . . 14  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  -.  1  e.  c )
9178, 90bitr2i 243 . . . . . . . . . . . . 13  |-  ( -.  1  e.  c  <->  c  C_  { i  |  -.  i  =  1 } )
9277, 91anbi12i 680 . . . . . . . . . . . 12  |-  ( ( c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  <->  ( c  C_  ( 1 ... ( M  +  N )
)  /\  c  C_  { i  |  -.  i  =  1 } ) )
9376elpw 3807 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  <->  c  C_  ( 2 ... ( M  +  N )
) )
9475, 92, 933imtr4i 259 . . . . . . . . . . 11  |-  ( ( c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  ->  c  e.  ~P ( 2 ... ( M  +  N )
) )
9539, 94impbii 182 . . . . . . . . . 10  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  <->  ( c  e.  ~P ( 1 ... ( M  +  N
) )  /\  -.  1  e.  c )
)
9695anbi1i 678 . . . . . . . . 9  |-  ( ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  <->  ( (
c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  /\  ( # `  c
)  =  M ) )
974rabeq2i 2955 . . . . . . . . . . 11  |-  ( c  e.  O  <->  ( c  e.  ~P ( 1 ... ( M  +  N
) )  /\  ( # `
 c )  =  M ) )
9897anbi1i 678 . . . . . . . . . 10  |-  ( ( c  e.  O  /\  -.  1  e.  c
)  <->  ( ( c  e.  ~P ( 1 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  /\  -.  1  e.  c
) )
99 an32 775 . . . . . . . . . 10  |-  ( ( ( c  e.  ~P ( 1 ... ( M  +  N )
)  /\  -.  1  e.  c )  /\  ( # `
 c )  =  M )  <->  ( (
c  e.  ~P (
1 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  /\  -.  1  e.  c
) )
10098, 99bitr4i 245 . . . . . . . . 9  |-  ( ( c  e.  O  /\  -.  1  e.  c
)  <->  ( ( c  e.  ~P ( 1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  /\  ( # `  c
)  =  M ) )
10196, 100bitr4i 245 . . . . . . . 8  |-  ( ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  <->  ( c  e.  O  /\  -.  1  e.  c ) )
102101abbii 2550 . . . . . . 7  |-  { c  |  ( c  e. 
~P ( 2 ... ( M  +  N
) )  /\  ( # `
 c )  =  M ) }  =  { c  |  ( c  e.  O  /\  -.  1  e.  c
) }
103 df-rab 2716 . . . . . . 7  |-  { c  e.  ~P ( 2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  =  { c  |  ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M ) }
104 df-rab 2716 . . . . . . 7  |-  { c  e.  O  |  -.  1  e.  c }  =  { c  |  ( c  e.  O  /\  -.  1  e.  c
) }
105102, 103, 1043eqtr4i 2468 . . . . . 6  |-  { c  e.  ~P ( 2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  =  { c  e.  O  |  -.  1  e.  c }
106105fveq2i 5734 . . . . 5  |-  ( # `  { c  e.  ~P ( 2 ... ( M  +  N )
)  |  ( # `  c )  =  M } )  =  (
# `  { c  e.  O  |  -.  1  e.  c }
)
107 fzfi 11316 . . . . . . 7  |-  ( 2 ... ( M  +  N ) )  e. 
Fin
1082nnzi 10310 . . . . . . 7  |-  M  e.  ZZ
109 hashbc 11707 . . . . . . 7  |-  ( ( ( 2 ... ( M  +  N )
)  e.  Fin  /\  M  e.  ZZ )  ->  ( ( # `  (
2 ... ( M  +  N ) ) )  _C  M )  =  ( # `  {
c  e.  ~P (
2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }
) )
110107, 108, 109mp2an 655 . . . . . 6  |-  ( (
# `  ( 2 ... ( M  +  N
) ) )  _C  M )  =  (
# `  { c  e.  ~P ( 2 ... ( M  +  N
) )  |  (
# `  c )  =  M } )
11118eluz1i 10500 . . . . . . . . . . 11  |-  ( ( M  +  N )  e.  ( ZZ>= `  2
)  <->  ( ( M  +  N )  e.  ZZ  /\  2  <_ 
( M  +  N
) ) )
11256, 50, 111mpbir2an 888 . . . . . . . . . 10  |-  ( M  +  N )  e.  ( ZZ>= `  2 )
113 hashfz 11697 . . . . . . . . . 10  |-  ( ( M  +  N )  e.  ( ZZ>= `  2
)  ->  ( # `  (
2 ... ( M  +  N ) ) )  =  ( ( ( M  +  N )  -  2 )  +  1 ) )
114112, 113ax-mp 5 . . . . . . . . 9  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( ( M  +  N )  -  2 )  +  1 )
1152nncni 10015 . . . . . . . . . . 11  |-  M  e.  CC
1163nncni 10015 . . . . . . . . . . 11  |-  N  e.  CC
117115, 116addcli 9099 . . . . . . . . . 10  |-  ( M  +  N )  e.  CC
118 2cn 10075 . . . . . . . . . 10  |-  2  e.  CC
119 ax-1cn 9053 . . . . . . . . . 10  |-  1  e.  CC
120 subadd23 9322 . . . . . . . . . 10  |-  ( ( ( M  +  N
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( ( M  +  N )  -  2 )  +  1 )  =  ( ( M  +  N )  +  ( 1  -  2 ) ) )
121117, 118, 119, 120mp3an 1280 . . . . . . . . 9  |-  ( ( ( M  +  N
)  -  2 )  +  1 )  =  ( ( M  +  N )  +  ( 1  -  2 ) )
122118, 119negsubdi2i 9391 . . . . . . . . . . 11  |-  -u (
2  -  1 )  =  ( 1  -  2 )
123 2m1e1 10100 . . . . . . . . . . . 12  |-  ( 2  -  1 )  =  1
124123negeqi 9304 . . . . . . . . . . 11  |-  -u (
2  -  1 )  =  -u 1
125122, 124eqtr3i 2460 . . . . . . . . . 10  |-  ( 1  -  2 )  = 
-u 1
126125oveq2i 6095 . . . . . . . . 9  |-  ( ( M  +  N )  +  ( 1  -  2 ) )  =  ( ( M  +  N )  +  -u
1 )
127114, 121, 1263eqtri 2462 . . . . . . . 8  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( M  +  N
)  +  -u 1
)
128117, 119negsubi 9383 . . . . . . . 8  |-  ( ( M  +  N )  +  -u 1 )  =  ( ( M  +  N )  -  1 )
129127, 128eqtri 2458 . . . . . . 7  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( M  +  N
)  -  1 )
130129oveq1i 6094 . . . . . 6  |-  ( (
# `  ( 2 ... ( M  +  N
) ) )  _C  M )  =  ( ( ( M  +  N )  -  1 )  _C  M )
131110, 130eqtr3i 2460 . . . . 5  |-  ( # `  { c  e.  ~P ( 2 ... ( M  +  N )
)  |  ( # `  c )  =  M } )  =  ( ( ( M  +  N )  -  1 )  _C  M )
132106, 131eqtr3i 2460 . . . 4  |-  ( # `  { c  e.  O  |  -.  1  e.  c } )  =  ( ( ( M  +  N )  -  1 )  _C  M )
1332, 3, 4ballotlem1 24749 . . . 4  |-  ( # `  O )  =  ( ( M  +  N
)  _C  M )
134132, 133oveq12i 6096 . . 3  |-  ( (
# `  { c  e.  O  |  -.  1  e.  c }
)  /  ( # `  O ) )  =  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  (
( M  +  N
)  _C  M ) )
13513, 134eqtri 2458 . 2  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  (
( M  +  N
)  _C  M ) )
136 0le1 9556 . . . . . 6  |-  0  <_  1
137 0re 9096 . . . . . . 7  |-  0  e.  RR
138137, 28, 46letri 9207 . . . . . 6  |-  ( ( 0  <_  1  /\  1  <_  M )  -> 
0  <_  M )
139136, 43, 138mp2an 655 . . . . 5  |-  0  <_  M
1403nngt0i 10038 . . . . . . 7  |-  0  <  N
14147, 140elrpii 10620 . . . . . 6  |-  N  e.  RR+
142 ltaddrp 10649 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR+ )  ->  M  <  ( M  +  N ) )
14346, 141, 142mp2an 655 . . . . 5  |-  M  < 
( M  +  N
)
144108, 139, 1433pm3.2i 1133 . . . 4  |-  ( M  e.  ZZ  /\  0  <_  M  /\  M  < 
( M  +  N
) )
145 0z 10298 . . . . 5  |-  0  e.  ZZ
146 elfzm11 11121 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( M  e.  ( 0 ... (
( M  +  N
)  -  1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  ( M  +  N )
) ) )
147145, 56, 146mp2an 655 . . . 4  |-  ( M  e.  ( 0 ... ( ( M  +  N )  -  1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  ( M  +  N )
) )
148144, 147mpbir 202 . . 3  |-  M  e.  ( 0 ... (
( M  +  N
)  -  1 ) )
149 bcm1n 24156 . . 3  |-  ( ( M  e.  ( 0 ... ( ( M  +  N )  - 
1 ) )  /\  ( M  +  N
)  e.  NN )  ->  ( ( ( ( M  +  N
)  -  1 )  _C  M )  / 
( ( M  +  N )  _C  M
) )  =  ( ( ( M  +  N )  -  M
)  /  ( M  +  N ) ) )
150148, 55, 149mp2an 655 . 2  |-  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  ( ( M  +  N )  _C  M ) )  =  ( ( ( M  +  N )  -  M )  /  ( M  +  N )
)
151 pncan2 9317 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
152115, 116, 151mp2an 655 . . 3  |-  ( ( M  +  N )  -  M )  =  N
153152oveq1i 6094 . 2  |-  ( ( ( M  +  N
)  -  M )  /  ( M  +  N ) )  =  ( N  /  ( M  +  N )
)
154135, 150, 1533eqtri 2462 1  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( N  /  ( M  +  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   {crab 2711    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   class class class wbr 4215    e. cmpt 4269   ` cfv 5457  (class class class)co 6084   Fincfn 7112   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    < clt 9125    <_ cle 9126    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   2c2 10054   ZZcz 10287   ZZ>=cuz 10493   RR+crp 10617   ...cfz 11048    _C cbc 11598   #chash 11623
This theorem is referenced by:  ballotth  24800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-seq 11329  df-fac 11572  df-bc 11599  df-hash 11624
  Copyright terms: Public domain W3C validator