Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem7 Structured version   Unicode version

Theorem ballotlem7 24785
Description:  R is a bijection between two subsets of  ( O  \  E ): one where a vote for A is picked first, and one where a vote for B is picked first (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlem7  |-  ( R  |`  { c  e.  ( O  \  E )  |  1  e.  c } ) : {
c  e.  ( O 
\  E )  |  1  e.  c } -1-1-onto-> { c  e.  ( O 
\  E )  |  -.  1  e.  c }
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k   
i, E, k    k, I, c    E, c    i, I, c    S, k, i, c    R, i, k    x, c, F    x, M    x, N, k, i
Allowed substitution hints:    P( x, i, k, c)    R( x, c)    S( x)    E( x)    I( x)    O( x)

Proof of Theorem ballotlem7
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 ballotth.r . . 3  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
21funmpt2 5482 . 2  |-  Fun  R
3 ballotth.m . . 3  |-  M  e.  NN
4 ballotth.n . . 3  |-  N  e.  NN
5 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
6 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
7 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
8 ballotth.e . . 3  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
9 ballotth.mgtn . . 3  |-  N  < 
M
10 ballotth.i . . 3  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
11 ballotth.s . . 3  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
123, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrinv 24783 . 2  |-  `' R  =  R
13 rabid 2876 . . . . . 6  |-  ( c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  <->  ( c  e.  ( O  \  E
)  /\  1  e.  c ) )
143, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrc 24780 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  ( R `  c )  e.  ( O  \  E
) )
1514adantr 452 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  ( R `  c
)  e.  ( O 
\  E ) )
163, 4, 5, 6, 7, 8, 9, 10ballotlem1c 24757 . . . . . . . . . 10  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  -.  ( I `  c )  e.  c )
1716ex 424 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  c  ->  -.  ( I `  c
)  e.  c ) )
183, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlem1ri 24784 . . . . . . . . . 10  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  ( R `
 c )  <->  ( I `  c )  e.  c ) )
1918notbid 286 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  ( R `  c )  <->  -.  ( I `  c
)  e.  c ) )
2017, 19sylibrd 226 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  c  ->  -.  1  e.  ( R `  c )
) )
2120imp 419 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  -.  1  e.  ( R `  c ) )
2215, 21jca 519 . . . . . 6  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  ( ( R `  c )  e.  ( O  \  E )  /\  -.  1  e.  ( R `  c
) ) )
2313, 22sylbi 188 . . . . 5  |-  ( c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  ->  (
( R `  c
)  e.  ( O 
\  E )  /\  -.  1  e.  ( R `  c )
) )
2423rgen 2763 . . . 4  |-  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( ( R `
 c )  e.  ( O  \  E
)  /\  -.  1  e.  ( R `  c
) )
25 eleq2 2496 . . . . . . . 8  |-  ( b  =  ( R `  c )  ->  (
1  e.  b  <->  1  e.  ( R `  c ) ) )
2625notbid 286 . . . . . . 7  |-  ( b  =  ( R `  c )  ->  ( -.  1  e.  b  <->  -.  1  e.  ( R `
 c ) ) )
2726elrab 3084 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  -.  1  e.  b }  <->  ( ( R `  c )  e.  ( O  \  E
)  /\  -.  1  e.  ( R `  c
) ) )
28 eleq2 2496 . . . . . . . . 9  |-  ( b  =  c  ->  (
1  e.  b  <->  1  e.  c ) )
2928notbid 286 . . . . . . . 8  |-  ( b  =  c  ->  ( -.  1  e.  b  <->  -.  1  e.  c ) )
3029cbvrabv 2947 . . . . . . 7  |-  { b  e.  ( O  \  E )  |  -.  1  e.  b }  =  { c  e.  ( O  \  E )  |  -.  1  e.  c }
3130eleq2i 2499 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  -.  1  e.  b }  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3227, 31bitr3i 243 . . . . 5  |-  ( ( ( R `  c
)  e.  ( O 
\  E )  /\  -.  1  e.  ( R `  c )
)  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3332ralbii 2721 . . . 4  |-  ( A. c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  -.  1  e.  ( R `  c ) )  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3424, 33mpbi 200 . . 3  |-  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c }
35 ssrab2 3420 . . . . 5  |-  { c  e.  ( O  \  E )  |  1  e.  c }  C_  ( O  \  E )
36 fvex 5734 . . . . . . 7  |-  ( S `
 c )  e. 
_V
37 imaexg 5209 . . . . . . 7  |-  ( ( S `  c )  e.  _V  ->  (
( S `  c
) " c )  e.  _V )
3836, 37ax-mp 8 . . . . . 6  |-  ( ( S `  c )
" c )  e. 
_V
3938, 1dmmpti 5566 . . . . 5  |-  dom  R  =  ( O  \  E )
4035, 39sseqtr4i 3373 . . . 4  |-  { c  e.  ( O  \  E )  |  1  e.  c }  C_  dom  R
41 nfrab1 2880 . . . . 5  |-  F/_ c { c  e.  ( O  \  E )  |  1  e.  c }
42 nfrab1 2880 . . . . 5  |-  F/_ c { c  e.  ( O  \  E )  |  -.  1  e.  c }
43 nfmpt1 4290 . . . . . 6  |-  F/_ c
( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
441, 43nfcxfr 2568 . . . . 5  |-  F/_ c R
4541, 42, 44funimass4f 24036 . . . 4  |-  ( ( Fun  R  /\  {
c  e.  ( O 
\  E )  |  1  e.  c } 
C_  dom  R )  ->  ( ( R " { c  e.  ( O  \  E )  |  1  e.  c } )  C_  { c  e.  ( O  \  E )  |  -.  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c } ) )
462, 40, 45mp2an 654 . . 3  |-  ( ( R " { c  e.  ( O  \  E )  |  1  e.  c } ) 
C_  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
4734, 46mpbir 201 . 2  |-  ( R
" { c  e.  ( O  \  E
)  |  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  -.  1  e.  c }
48 rabid 2876 . . . . . 6  |-  ( c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  <->  ( c  e.  ( O  \  E
)  /\  -.  1  e.  c ) )
4914adantr 452 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( R `  c )  e.  ( O  \  E ) )
503, 4, 5, 6, 7, 8, 9, 10ballotlemic 24756 . . . . . . . . . 10  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( I `  c )  e.  c )
5150ex 424 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  c  ->  ( I `  c
)  e.  c ) )
5251, 18sylibrd 226 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  c  ->  1  e.  ( R `
 c ) ) )
5352imp 419 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  1  e.  ( R `  c ) )
5449, 53jca 519 . . . . . 6  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( ( R `  c )  e.  ( O  \  E
)  /\  1  e.  ( R `  c ) ) )
5548, 54sylbi 188 . . . . 5  |-  ( c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  ->  (
( R `  c
)  e.  ( O 
\  E )  /\  1  e.  ( R `  c ) ) )
5655rgen 2763 . . . 4  |-  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  1  e.  ( R `  c
) )
5725elrab 3084 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  1  e.  b }  <->  ( ( R `  c )  e.  ( O  \  E
)  /\  1  e.  ( R `  c ) ) )
5828cbvrabv 2947 . . . . . . 7  |-  { b  e.  ( O  \  E )  |  1  e.  b }  =  { c  e.  ( O  \  E )  |  1  e.  c }
5958eleq2i 2499 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  1  e.  b }  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  1  e.  c } )
6057, 59bitr3i 243 . . . . 5  |-  ( ( ( R `  c
)  e.  ( O 
\  E )  /\  1  e.  ( R `  c ) )  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  1  e.  c } )
6160ralbii 2721 . . . 4  |-  ( A. c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  1  e.  ( R `  c
) )  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c } )
6256, 61mpbi 200 . . 3  |-  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c }
63 ssrab2 3420 . . . . 5  |-  { c  e.  ( O  \  E )  |  -.  1  e.  c }  C_  ( O  \  E
)
6463, 39sseqtr4i 3373 . . . 4  |-  { c  e.  ( O  \  E )  |  -.  1  e.  c }  C_ 
dom  R
6542, 41, 44funimass4f 24036 . . . 4  |-  ( ( Fun  R  /\  {
c  e.  ( O 
\  E )  |  -.  1  e.  c }  C_  dom  R )  ->  ( ( R
" { c  e.  ( O  \  E
)  |  -.  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c } 
( R `  c
)  e.  { c  e.  ( O  \  E )  |  1  e.  c } ) )
662, 64, 65mp2an 654 . . 3  |-  ( ( R " { c  e.  ( O  \  E )  |  -.  1  e.  c }
)  C_  { c  e.  ( O  \  E
)  |  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c } )
6762, 66mpbir 201 . 2  |-  ( R
" { c  e.  ( O  \  E
)  |  -.  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  1  e.  c }
682, 12, 47, 67, 40, 64rinvf1o 24034 1  |-  ( R  |`  { c  e.  ( O  \  E )  |  1  e.  c } ) : {
c  e.  ( O 
\  E )  |  1  e.  c } -1-1-onto-> { c  e.  ( O 
\  E )  |  -.  1  e.  c }
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309    i^i cin 3311    C_ wss 3312   ifcif 3731   ~Pcpw 3791   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873   Fun wfun 5440   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   supcsup 7437   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   ZZcz 10274   ...cfz 11035   #chash 11610
This theorem is referenced by:  ballotlem8  24786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-hash 11611
  Copyright terms: Public domain W3C validator