Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem7 Unicode version

Theorem ballotlem7 24572
Description:  R is a bijection between two subsets of  ( O  \  E ): one where a vote for A is picked first, and one where a vote for B is picked first (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlem7  |-  ( R  |`  { c  e.  ( O  \  E )  |  1  e.  c } ) : {
c  e.  ( O 
\  E )  |  1  e.  c } -1-1-onto-> { c  e.  ( O 
\  E )  |  -.  1  e.  c }
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k   
i, E, k    k, I, c    E, c    i, I, c    S, k, i, c    R, i, k    x, c, F    x, M    x, N, k, i
Allowed substitution hints:    P( x, i, k, c)    R( x, c)    S( x)    E( x)    I( x)    O( x)

Proof of Theorem ballotlem7
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 ballotth.r . . 3  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
21funmpt2 5430 . 2  |-  Fun  R
3 ballotth.m . . 3  |-  M  e.  NN
4 ballotth.n . . 3  |-  N  e.  NN
5 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
6 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
7 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
8 ballotth.e . . 3  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
9 ballotth.mgtn . . 3  |-  N  < 
M
10 ballotth.i . . 3  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
11 ballotth.s . . 3  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
123, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrinv 24570 . 2  |-  `' R  =  R
13 rabid 2827 . . . . . 6  |-  ( c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  <->  ( c  e.  ( O  \  E
)  /\  1  e.  c ) )
143, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrc 24567 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  ( R `  c )  e.  ( O  \  E
) )
1514adantr 452 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  ( R `  c
)  e.  ( O 
\  E ) )
163, 4, 5, 6, 7, 8, 9, 10ballotlem1c 24544 . . . . . . . . . 10  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  -.  ( I `  c )  e.  c )
1716ex 424 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  c  ->  -.  ( I `  c
)  e.  c ) )
183, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlem1ri 24571 . . . . . . . . . 10  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  ( R `
 c )  <->  ( I `  c )  e.  c ) )
1918notbid 286 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  ( R `  c )  <->  -.  ( I `  c
)  e.  c ) )
2017, 19sylibrd 226 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  (
1  e.  c  ->  -.  1  e.  ( R `  c )
) )
2120imp 419 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  -.  1  e.  ( R `  c ) )
2215, 21jca 519 . . . . . 6  |-  ( ( c  e.  ( O 
\  E )  /\  1  e.  c )  ->  ( ( R `  c )  e.  ( O  \  E )  /\  -.  1  e.  ( R `  c
) ) )
2313, 22sylbi 188 . . . . 5  |-  ( c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  ->  (
( R `  c
)  e.  ( O 
\  E )  /\  -.  1  e.  ( R `  c )
) )
2423rgen 2714 . . . 4  |-  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( ( R `
 c )  e.  ( O  \  E
)  /\  -.  1  e.  ( R `  c
) )
25 eleq2 2448 . . . . . . . 8  |-  ( b  =  ( R `  c )  ->  (
1  e.  b  <->  1  e.  ( R `  c ) ) )
2625notbid 286 . . . . . . 7  |-  ( b  =  ( R `  c )  ->  ( -.  1  e.  b  <->  -.  1  e.  ( R `
 c ) ) )
2726elrab 3035 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  -.  1  e.  b }  <->  ( ( R `  c )  e.  ( O  \  E
)  /\  -.  1  e.  ( R `  c
) ) )
28 eleq2 2448 . . . . . . . . 9  |-  ( b  =  c  ->  (
1  e.  b  <->  1  e.  c ) )
2928notbid 286 . . . . . . . 8  |-  ( b  =  c  ->  ( -.  1  e.  b  <->  -.  1  e.  c ) )
3029cbvrabv 2898 . . . . . . 7  |-  { b  e.  ( O  \  E )  |  -.  1  e.  b }  =  { c  e.  ( O  \  E )  |  -.  1  e.  c }
3130eleq2i 2451 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  -.  1  e.  b }  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3227, 31bitr3i 243 . . . . 5  |-  ( ( ( R `  c
)  e.  ( O 
\  E )  /\  -.  1  e.  ( R `  c )
)  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3332ralbii 2673 . . . 4  |-  ( A. c  e.  { c  e.  ( O  \  E
)  |  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  -.  1  e.  ( R `  c ) )  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
3424, 33mpbi 200 . . 3  |-  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c }
35 ssrab2 3371 . . . . 5  |-  { c  e.  ( O  \  E )  |  1  e.  c }  C_  ( O  \  E )
36 fvex 5682 . . . . . . 7  |-  ( S `
 c )  e. 
_V
37 imaexg 5157 . . . . . . 7  |-  ( ( S `  c )  e.  _V  ->  (
( S `  c
) " c )  e.  _V )
3836, 37ax-mp 8 . . . . . 6  |-  ( ( S `  c )
" c )  e. 
_V
3938, 1dmmpti 5514 . . . . 5  |-  dom  R  =  ( O  \  E )
4035, 39sseqtr4i 3324 . . . 4  |-  { c  e.  ( O  \  E )  |  1  e.  c }  C_  dom  R
41 nfrab1 2831 . . . . 5  |-  F/_ c { c  e.  ( O  \  E )  |  1  e.  c }
42 nfrab1 2831 . . . . 5  |-  F/_ c { c  e.  ( O  \  E )  |  -.  1  e.  c }
43 nfmpt1 4239 . . . . . 6  |-  F/_ c
( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
441, 43nfcxfr 2520 . . . . 5  |-  F/_ c R
4541, 42, 44funimass4f 23887 . . . 4  |-  ( ( Fun  R  /\  {
c  e.  ( O 
\  E )  |  1  e.  c } 
C_  dom  R )  ->  ( ( R " { c  e.  ( O  \  E )  |  1  e.  c } )  C_  { c  e.  ( O  \  E )  |  -.  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c } ) )
462, 40, 45mp2an 654 . . 3  |-  ( ( R " { c  e.  ( O  \  E )  |  1  e.  c } ) 
C_  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  1  e.  c }  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  -.  1  e.  c } )
4734, 46mpbir 201 . 2  |-  ( R
" { c  e.  ( O  \  E
)  |  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  -.  1  e.  c }
48 rabid 2827 . . . . . 6  |-  ( c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  <->  ( c  e.  ( O  \  E
)  /\  -.  1  e.  c ) )
4914adantr 452 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( R `  c )  e.  ( O  \  E ) )
503, 4, 5, 6, 7, 8, 9, 10ballotlemic 24543 . . . . . . . . . 10  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( I `  c )  e.  c )
5150ex 424 . . . . . . . . 9  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  c  ->  ( I `  c
)  e.  c ) )
5251, 18sylibrd 226 . . . . . . . 8  |-  ( c  e.  ( O  \  E )  ->  ( -.  1  e.  c  ->  1  e.  ( R `
 c ) ) )
5352imp 419 . . . . . . 7  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  1  e.  ( R `  c ) )
5449, 53jca 519 . . . . . 6  |-  ( ( c  e.  ( O 
\  E )  /\  -.  1  e.  c
)  ->  ( ( R `  c )  e.  ( O  \  E
)  /\  1  e.  ( R `  c ) ) )
5548, 54sylbi 188 . . . . 5  |-  ( c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  ->  (
( R `  c
)  e.  ( O 
\  E )  /\  1  e.  ( R `  c ) ) )
5655rgen 2714 . . . 4  |-  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  1  e.  ( R `  c
) )
5725elrab 3035 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  1  e.  b }  <->  ( ( R `  c )  e.  ( O  \  E
)  /\  1  e.  ( R `  c ) ) )
5828cbvrabv 2898 . . . . . . 7  |-  { b  e.  ( O  \  E )  |  1  e.  b }  =  { c  e.  ( O  \  E )  |  1  e.  c }
5958eleq2i 2451 . . . . . 6  |-  ( ( R `  c )  e.  { b  e.  ( O  \  E
)  |  1  e.  b }  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  1  e.  c } )
6057, 59bitr3i 243 . . . . 5  |-  ( ( ( R `  c
)  e.  ( O 
\  E )  /\  1  e.  ( R `  c ) )  <->  ( R `  c )  e.  {
c  e.  ( O 
\  E )  |  1  e.  c } )
6160ralbii 2673 . . . 4  |-  ( A. c  e.  { c  e.  ( O  \  E
)  |  -.  1  e.  c }  ( ( R `  c )  e.  ( O  \  E )  /\  1  e.  ( R `  c
) )  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c } )
6256, 61mpbi 200 . . 3  |-  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c }
63 ssrab2 3371 . . . . 5  |-  { c  e.  ( O  \  E )  |  -.  1  e.  c }  C_  ( O  \  E
)
6463, 39sseqtr4i 3324 . . . 4  |-  { c  e.  ( O  \  E )  |  -.  1  e.  c }  C_ 
dom  R
6542, 41, 44funimass4f 23887 . . . 4  |-  ( ( Fun  R  /\  {
c  e.  ( O 
\  E )  |  -.  1  e.  c }  C_  dom  R )  ->  ( ( R
" { c  e.  ( O  \  E
)  |  -.  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c } 
( R `  c
)  e.  { c  e.  ( O  \  E )  |  1  e.  c } ) )
662, 64, 65mp2an 654 . . 3  |-  ( ( R " { c  e.  ( O  \  E )  |  -.  1  e.  c }
)  C_  { c  e.  ( O  \  E
)  |  1  e.  c }  <->  A. c  e.  { c  e.  ( O  \  E )  |  -.  1  e.  c }  ( R `
 c )  e. 
{ c  e.  ( O  \  E )  |  1  e.  c } )
6762, 66mpbir 201 . 2  |-  ( R
" { c  e.  ( O  \  E
)  |  -.  1  e.  c } )  C_  { c  e.  ( O 
\  E )  |  1  e.  c }
682, 12, 47, 67, 40, 64rinvf1o 23885 1  |-  ( R  |`  { c  e.  ( O  \  E )  |  1  e.  c } ) : {
c  e.  ( O 
\  E )  |  1  e.  c } -1-1-onto-> { c  e.  ( O 
\  E )  |  -.  1  e.  c }
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   {crab 2653   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   ifcif 3682   ~Pcpw 3742   class class class wbr 4153    e. cmpt 4207   `'ccnv 4817   dom cdm 4818    |` cres 4820   "cima 4821   Fun wfun 5388   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   supcsup 7380   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   ZZcz 10214   ...cfz 10975   #chash 11545
This theorem is referenced by:  ballotlem8  24573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-fz 10976  df-hash 11546
  Copyright terms: Public domain W3C validator