Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotleme Unicode version

Theorem ballotleme 23071
 Description: Elements of . (Contributed by Thierry Arnoux, 14-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m
ballotth.n
ballotth.o
ballotth.p
ballotth.f
ballotth.e
Assertion
Ref Expression
ballotleme
Distinct variable groups:   ,   ,   ,   ,   ,   ,,   ,,   ,
Allowed substitution hints:   (,)   (,,)   (,,)   ()   ()   ()   ()

Proof of Theorem ballotleme
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . 5
21fveq1d 5543 . . . 4
32breq2d 4051 . . 3
43ralbidv 2576 . 2
5 ballotth.e . . 3
6 nfcv 2432 . . . 4
7 nfcv 2432 . . . 4
8 nfv 1609 . . . 4
9 nfv 1609 . . . 4
10 fveq2 5541 . . . . . . 7
1110fveq1d 5543 . . . . . 6
1211breq2d 4051 . . . . 5
1312ralbidv 2576 . . . 4
146, 7, 8, 9, 13cbvrab 2799 . . 3
155, 14eqtri 2316 . 2
164, 15elrab2 2938 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358   wceq 1632   wcel 1696  wral 2556  crab 2560   cdif 3162   cin 3164  cpw 3638   class class class wbr 4039   cmpt 4093  cfv 5271  (class class class)co 5874  cc0 8753  c1 8754   caddc 8756   clt 8883   cmin 9053   cdiv 9439  cn 9762  cz 10040  cfz 10798  chash 11353 This theorem is referenced by:  ballotlemodife  23072  ballotlem4  23073 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279
 Copyright terms: Public domain W3C validator