Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotleme Structured version   Unicode version

Theorem ballotleme 24746
 Description: Elements of . (Contributed by Thierry Arnoux, 14-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m
ballotth.n
ballotth.o
ballotth.p
ballotth.f
ballotth.e
Assertion
Ref Expression
ballotleme
Distinct variable groups:   ,   ,   ,   ,   ,   ,,   ,,   ,
Allowed substitution hints:   (,)   (,,)   (,,)   ()   ()   ()   ()

Proof of Theorem ballotleme
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . . 5
21fveq1d 5722 . . . 4
32breq2d 4216 . . 3
43ralbidv 2717 . 2
5 ballotth.e . . 3
6 fveq2 5720 . . . . . . 7
76fveq1d 5722 . . . . . 6
87breq2d 4216 . . . . 5
98ralbidv 2717 . . . 4
109cbvrabv 2947 . . 3
115, 10eqtri 2455 . 2
124, 11elrab2 3086 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wceq 1652   wcel 1725  wral 2697  crab 2701   cdif 3309   cin 3311  cpw 3791   class class class wbr 4204   cmpt 4258  cfv 5446  (class class class)co 6073  cc0 8982  c1 8983   caddc 8985   clt 9112   cmin 9283   cdiv 9669  cn 9992  cz 10274  cfz 11035  chash 11610 This theorem is referenced by:  ballotlemodife  24747  ballotlem4  24748 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454
 Copyright terms: Public domain W3C validator