Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfcc Structured version   Unicode version

Theorem ballotlemfcc 24743
Description:  F takes value 0 between positive and negative values. (Contributed by Thierry Arnoux, 2-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfcc.c  |-  ( ph  ->  C  e.  O )
ballotlemfcc.j  |-  ( ph  ->  J  e.  NN )
ballotlemfcc.3  |-  ( ph  ->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `  C ) `  i ) )
ballotlemfcc.4  |-  ( ph  ->  ( ( F `  C ) `  J
)  <  0 )
Assertion
Ref Expression
ballotlemfcc  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F    k, F    C, i    i, J    ph, i, k    k, J    C, k    ph, k
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, k, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfcc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . . . . 7  |-  ( i  =  k  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  k ) )
21breq2d 4216 . . . . . 6  |-  ( i  =  k  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  k )
) )
32elrab 3084 . . . . 5  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  <->  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )
43anbi1i 677 . . . 4  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k )  <->  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )
5 simprl 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  k  e.  ( 1 ... J
) )
65adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  k  e.  ( 1 ... J ) )
7 fzssuz 11085 . . . . . . . . . . . . . 14  |-  ( 1 ... J )  C_  ( ZZ>= `  1 )
8 uzssz 10497 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  C_  ZZ
97, 8sstri 3349 . . . . . . . . . . . . 13  |-  ( 1 ... J )  C_  ZZ
10 zssre 10281 . . . . . . . . . . . . 13  |-  ZZ  C_  RR
119, 10sstri 3349 . . . . . . . . . . . 12  |-  ( 1 ... J )  C_  RR
1211sseli 3336 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  k  e.  RR )
1312ltp1d 9933 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  k  <  ( k  +  1 ) )
14 1re 9082 . . . . . . . . . . . . 13  |-  1  e.  RR
1514a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  1  e.  RR )
1612, 15readdcld 9107 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  RR )
1712, 16ltnled 9212 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  (
k  <  ( k  +  1 )  <->  -.  (
k  +  1 )  <_  k ) )
1813, 17mpbid 202 . . . . . . . . 9  |-  ( k  e.  ( 1 ... J )  ->  -.  ( k  +  1 )  <_  k )
196, 18syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  ( k  +  1 )  <_ 
k )
20 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k )
21 ballotlemfcc.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( F `  C ) `  J
)  <  0 )
2221adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  (
( F `  C
) `  J )  <  0 )
23 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  =  J )  ->  k  =  J )
2423fveq2d 5724 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  =  J )  ->  (
( F `  C
) `  k )  =  ( ( F `
 C ) `  J ) )
2524breq1d 4214 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  k
)  <  0  <->  ( ( F `  C ) `  J )  <  0
) )
26 ballotlemfcc.j . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
27 elnnuz 10514 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
2826, 27sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
29 eluzfz2 11057 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  ( ZZ>= `  1
)  ->  J  e.  ( 1 ... J
) )
3028, 29syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  ( 1 ... J ) )
31 eleq1 2495 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  J  ->  (
k  e.  ( 1 ... J )  <->  J  e.  ( 1 ... J
) ) )
3230, 31syl5ibrcom 214 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  J  ->  k  e.  ( 1 ... J ) ) )
3332anc2li 541 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  J  ->  ( ph  /\  k  e.  ( 1 ... J ) ) ) )
34 1z 10303 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  ZZ
35 0le1 9543 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  1
36 0z 10285 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  ZZ
3736eluz1i 10487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( ZZ>= `  0
)  <->  ( 1  e.  ZZ  /\  0  <_ 
1 ) )
3834, 35, 37mpbir2an 887 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( ZZ>= `  0 )
39 fzss1 11083 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... J )  C_  ( 0 ... J
) )
4039sseld 3339 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 1 ... J
)  ->  k  e.  ( 0 ... J
) ) )
4138, 40ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ( 0 ... J
) )
42 ballotth.m . . . . . . . . . . . . . . . . . . . . . 22  |-  M  e.  NN
43 ballotth.n . . . . . . . . . . . . . . . . . . . . . 22  |-  N  e.  NN
44 ballotth.o . . . . . . . . . . . . . . . . . . . . . 22  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
45 ballotth.p . . . . . . . . . . . . . . . . . . . . . 22  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
46 ballotth.f . . . . . . . . . . . . . . . . . . . . . 22  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
47 ballotlemfcc.c . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  C  e.  O )
4847adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  C  e.  O )
49 elfzelz 11051 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 0 ... J )  ->  k  e.  ZZ )
5049adantl 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  k  e.  ZZ )
5142, 43, 44, 45, 46, 48, 50ballotlemfelz 24740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
5251zred 10367 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  RR )
53 0re 9083 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  RR
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  0  e.  RR )
5552, 54ltnled 9212 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5641, 55sylan2 461 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... J
) )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5733, 56syl6 31 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  =  J  ->  ( ( ( F `  C ) `
 k )  <  0  <->  -.  0  <_  ( ( F `  C
) `  k )
) ) )
5857imp 419 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5925, 58bitr3d 247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  J
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
6022, 59mpbid 202 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  =  J )  ->  -.  0  <_  ( ( F `
 C ) `  k ) )
6160ex 424 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  =  J  ->  -.  0  <_  ( ( F `  C
) `  k )
) )
6261con2d 109 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  (
( F `  C
) `  k )  ->  -.  k  =  J ) )
63 nn1m1nn 10012 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  NN  ->  ( J  =  1  \/  ( J  -  1
)  e.  NN ) )
6426, 63syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( J  =  1  \/  ( J  - 
1 )  e.  NN ) )
65 ballotlemfcc.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `  C ) `  i ) )
6665adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  ( 1 ... J
) 0  <_  (
( F `  C
) `  i )
)
67 oveq1 6080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( J  =  1  ->  ( J ... J )  =  ( 1 ... J
) )
6867adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  ( 1 ... J
) )
6926nnzd 10366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  J  e.  ZZ )
70 fzsn 11086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( J  e.  ZZ  ->  ( J ... J )  =  { J } )
7169, 70syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( J ... J
)  =  { J } )
7271adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  { J } )
7368, 72eqtr3d 2469 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  J  = 
1 )  ->  (
1 ... J )  =  { J } )
7473rexeqdv 2903 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  (
1 ... J ) 0  <_  ( ( F `
 C ) `  i )  <->  E. i  e.  { J } 0  <_  ( ( F `
 C ) `  i ) ) )
7566, 74mpbid 202 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  { J } 0  <_  ( ( F `
 C ) `  i ) )
76 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( i  =  J  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  J ) )
7776breq2d 4216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( i  =  J  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  J )
) )
7877rexsng 3839 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( J  e.  NN  ->  ( E. i  e.  { J } 0  <_  (
( F `  C
) `  i )  <->  0  <_  ( ( F `
 C ) `  J ) ) )
7926, 78syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( E. i  e. 
{ J } 0  <_  ( ( F `
 C ) `  i )  <->  0  <_  ( ( F `  C
) `  J )
) )
8079adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  { J } 0  <_  (
( F `  C
) `  i )  <->  0  <_  ( ( F `
 C ) `  J ) ) )
8175, 80mpbid 202 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  0  <_  ( ( F `  C ) `  J
) )
8221adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  (
( F `  C
) `  J )  <  0 )
8342, 43, 44, 45, 46, 47, 69ballotlemfelz 24740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  ZZ )
8483zred 10367 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  RR )
8553a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
8684, 85ltnled 9212 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( F `
 C ) `  J )  <  0  <->  -.  0  <_  ( ( F `  C ) `  J ) ) )
8786adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  (
( ( F `  C ) `  J
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  J
) ) )
8882, 87mpbid 202 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  -.  0  <_  ( ( F `
 C ) `  J ) )
8981, 88pm2.65da 560 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  J  =  1 )
90 biortn 396 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  J  =  1  -> 
( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
9189, 90syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
92 notnot 283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  =  1  <->  -.  -.  J  =  1 )
9392orbi1i 507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  =  1  \/  ( J  -  1 )  e.  NN )  <-> 
( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) )
9491, 93syl6bbr 255 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
9564, 94mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  NN )
96 elnnuz 10514 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  -  1 )  e.  NN  <->  ( J  -  1 )  e.  ( ZZ>= `  1 )
)
9795, 96sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( J  -  1 )  e.  ( ZZ>= ` 
1 ) )
98 elfzp1 11089 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  -  1 )  e.  ( ZZ>= `  1
)  ->  ( k  e.  ( 1 ... (
( J  -  1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) ) ) )
9997, 98syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  -  1 )  +  1 ) ) ) )
10026nncnd 10008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  CC )
101 ax-1cn 9040 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
102101a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
103100, 102npcand 9407 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( J  - 
1 )  +  1 )  =  J )
104103oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... (
( J  -  1 )  +  1 ) )  =  ( 1 ... J ) )
105104eleq2d 2502 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
k  e.  ( 1 ... J ) ) )
106103eqeq2d 2446 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  ( ( J  -  1 )  +  1 )  <-> 
k  =  J ) )
107106orbi2d 683 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
10899, 105, 1073bitr3d 275 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
109 orcom 377 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( 1 ... ( J  - 
1 ) )  \/  k  =  J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) )
110108, 109syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
111110biimpd 199 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  ( 1 ... J )  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
112 pm5.6 879 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  ( 1 ... J )  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) )  <->  ( k  e.  ( 1 ... J
)  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
113111, 112sylibr 204 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) ) )
11495nnzd 10366 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
115114, 34jctil 524 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ ) )
116 elfzelz 11051 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  k  e.  ZZ )
117116, 34jctir 525 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  (
k  e.  ZZ  /\  1  e.  ZZ )
)
118 fzaddel 11079 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( 1 ... ( J  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) ) ) )
119115, 117, 118syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  e.  ( 1 ... ( J  - 
1 ) )  <->  ( k  +  1 )  e.  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) ) ) )
120119biimp3a 1283 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) )  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
1211203anidm23 1243 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
122 1p1e2 10086 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  +  1 )  =  2
123122a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1  +  1 )  =  2 )
124123, 103oveq12d 6091 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) )  =  ( 2 ... J ) )
125124eleq2d 2502 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  +  1 )  e.  ( 2 ... J ) ) )
126 1nn0 10229 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  NN0
12714, 126nn0addge1i 10260 . . . . . . . . . . . . . . . . . . . . 21  |-  1  <_  ( 1  +  1 )
128127, 122breqtri 4227 . . . . . . . . . . . . . . . . . . . 20  |-  1  <_  2
129 2z 10304 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  ZZ
130 eluz 10491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  e.  (
ZZ>= `  1 )  <->  1  <_  2 ) )
13134, 129, 130mp2an 654 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  e.  ( ZZ>= `  1
)  <->  1  <_  2
)
132128, 131mpbir 201 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ( ZZ>= `  1 )
133 fzss1 11083 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... J )  C_  ( 1 ... J
) )
134132, 133ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( 2 ... J )  C_  ( 1 ... J
)
135134sseli 3336 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 2 ... J )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
136125, 135syl6bi 220 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
137136adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  -> 
( k  +  1 )  e.  ( 1 ... J ) ) )
138121, 137mpd 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
139138ex 424 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
140113, 139syld 42 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  (
k  +  1 )  e.  ( 1 ... J ) ) )
14162, 140sylan2d 469 . . . . . . . . . . 11  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
)  ->  ( k  +  1 )  e.  ( 1 ... J
) ) )
142141imp 419 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
143142adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) )
144 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( i  =  ( k  +  1 )  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  ( k  +  1 ) ) )
145144breq2d 4216 . . . . . . . . . . . . 13  |-  ( i  =  ( k  +  1 )  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) ) )
146145elrab 3084 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  <->  ( (
k  +  1 )  e.  ( 1 ... J )  /\  0  <_  ( ( F `  C ) `  (
k  +  1 ) ) ) )
147 breq1 4207 . . . . . . . . . . . . 13  |-  ( j  =  ( k  +  1 )  ->  (
j  <_  k  <->  ( k  +  1 )  <_ 
k ) )
148147rspccva 3043 . . . . . . . . . . . 12  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } )  -> 
( k  +  1 )  <_  k )
149146, 148sylan2br 463 . . . . . . . . . . 11  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
( k  +  1 )  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  ( k  +  1 ) ) ) )  ->  ( k  +  1 )  <_  k
)
150149expr 599 . . . . . . . . . 10  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  ( 1 ... J ) )  -> 
( 0  <_  (
( F `  C
) `  ( k  +  1 ) )  ->  ( k  +  1 )  <_  k
) )
151150con3d 127 . . . . . . . . 9  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  ( 1 ... J ) )  -> 
( -.  ( k  +  1 )  <_ 
k  ->  -.  0  <_  ( ( F `  C ) `  (
k  +  1 ) ) ) )
15220, 143, 151syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( -.  (
k  +  1 )  <_  k  ->  -.  0  <_  ( ( F `
 C ) `  ( k  +  1 ) ) ) )
15319, 152mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) )
154 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  ->  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k )
155143adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  e.  ( 1 ... J ) )
15653a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  e.  RR )
157 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ph )
158142adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( k  +  1 )  e.  ( 1 ... J
) )
15939sseld 3339 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( (
k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  ( 0 ... J ) ) )
16038, 158, 159mpsyl 61 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( k  +  1 )  e.  ( 0 ... J
) )
16147adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  C  e.  O )
162 elfzelz 11051 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 0 ... J )  ->  (
k  +  1 )  e.  ZZ )
163162adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
k  +  1 )  e.  ZZ )
16442, 43, 44, 45, 46, 161, 163ballotlemfelz 24740 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  ZZ )
165164zred 10367 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  RR )
166157, 160, 165syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  e.  RR )
167 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <_  ( ( F `  C
) `  k )
)
1685adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  k  e.  ( 1 ... J
) )
169168, 41syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  k  e.  ( 0 ... J
) )
170141imdistani 672 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  ( ph  /\  ( k  +  1 )  e.  ( 1 ... J ) ) )
17147adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  C  e.  O )
172 elfznn 11072 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  NN )
173172adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
k  +  1 )  e.  NN )
17442, 43, 44, 45, 46, 171, 173ballotlemfp1 24741 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( -.  ( k  +  1 )  e.  C  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )  /\  ( ( k  +  1 )  e.  C  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 ) ) ) )
175174simprd 450 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 ) ) )
176175imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 ) )
177170, 176sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 ) )
178 elfzelz 11051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ZZ )
179178zcnd 10368 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  k  e.  CC )
180101a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  1  e.  CC )
181179, 180pncand 9404 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... J )  ->  (
( k  +  1 )  -  1 )  =  k )
182181fveq2d 5724 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  (
( F `  C
) `  ( (
k  +  1 )  -  1 ) )  =  ( ( F `
 C ) `  k ) )
183182oveq1d 6088 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 )  =  ( ( ( F `  C ) `
 k )  +  1 ) )
184183eqeq2d 2446 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
185168, 184syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
186177, 185mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) )
187 zleltp1 10318 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  ( ( F `  C ) `  k
)  e.  ZZ )  ->  ( 0  <_ 
( ( F `  C ) `  k
)  <->  0  <  (
( ( F `  C ) `  k
)  +  1 ) ) )
18836, 51, 187sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
0  <_  ( ( F `  C ) `  k )  <->  0  <  ( ( ( F `  C ) `  k
)  +  1 ) ) )
189188adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <_  (
( F `  C
) `  k )  <->  0  <  ( ( ( F `  C ) `
 k )  +  1 ) ) )
190 breq2 4208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 )  ->  (
0  <  ( ( F `  C ) `  ( k  +  1 ) )  <->  0  <  ( ( ( F `  C ) `  k
)  +  1 ) ) )
191190adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <  (
( F `  C
) `  ( k  +  1 ) )  <->  0  <  ( ( ( F `  C
) `  k )  +  1 ) ) )
192189, 191bitr4d 248 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <_  (
( F `  C
) `  k )  <->  0  <  ( ( F `
 C ) `  ( k  +  1 ) ) ) )
193157, 169, 186, 192syl21anc 1183 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( 0  <_  ( ( F `
 C ) `  k )  <->  0  <  ( ( F `  C
) `  ( k  +  1 ) ) ) )
194167, 193mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <  ( ( F `  C
) `  ( k  +  1 ) ) )
195156, 166, 194ltled 9213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) )
196195adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
0  <_  ( ( F `  C ) `  ( k  +  1 ) ) )
197154, 155, 196, 149syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  <_  k )
19819, 197mtand 641 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  ( k  +  1 )  e.  C )
199174simpld 446 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  ( -.  ( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 ) ) )
200199imp 419 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )
201170, 200sylan 458 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  - 
1 ) )
2025adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  k  e.  ( 1 ... J
) )
203182oveq1d 6088 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )
204203eqeq2d 2446 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) ) )
205202, 204syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) ) )
206201, 205mpbid 202 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )
207206adantlrr 702 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) )
208198, 207mpdan 650 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) )
209 breq2 4208 . . . . . . . . 9  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 )  ->  (
0  <_  ( ( F `  C ) `  ( k  +  1 ) )  <->  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
210209notbid 286 . . . . . . . 8  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 )  ->  ( -.  0  <_  ( ( F `  C ) `
 ( k  +  1 ) )  <->  -.  0  <_  ( ( ( F `
 C ) `  k )  -  1 ) ) )
211208, 210syl 16 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( -.  0  <_  ( ( F `  C ) `  (
k  +  1 ) )  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
212153, 211mpbid 202 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) )
2135, 41syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  k  e.  ( 0 ... J
) )
214213, 51syldan 457 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
215214adantrr 698 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  e.  ZZ )
216 zlem1lt 10319 . . . . . . . . 9  |-  ( ( ( ( F `  C ) `  k
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ( F `
 C ) `  k )  <_  0  <->  ( ( ( F `  C ) `  k
)  -  1 )  <  0 ) )
21736, 216mpan2 653 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  <_  0  <->  ( ( ( F `  C ) `
 k )  - 
1 )  <  0
) )
218 zre 10278 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( ( F `  C ) `  k )  e.  RR )
21914a1i 11 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  1  e.  RR )
220218, 219resubcld 9457 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  -  1 )  e.  RR )
22153a1i 11 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  0  e.  RR )
222220, 221ltnled 9212 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( ( F `  C ) `  k
)  -  1 )  <  0  <->  -.  0  <_  ( ( ( F `
 C ) `  k )  -  1 ) ) )
223217, 222bitrd 245 . . . . . . 7  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  <_  0  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
224215, 223syl 16 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( ( F `  C ) `
 k )  <_ 
0  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
225212, 224mpbird 224 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  <_  0
)
226 simprlr 740 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  0  <_  (
( F `  C
) `  k )
)
227215zred 10367 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  e.  RR )
22853a1i 11 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  0  e.  RR )
229227, 228letri3d 9207 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( ( F `  C ) `
 k )  =  0  <->  ( ( ( F `  C ) `
 k )  <_ 
0  /\  0  <_  ( ( F `  C
) `  k )
) ) )
230225, 226, 229mpbir2and 889 . . . 4  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  =  0 )
2314, 230sylan2b 462 . . 3  |-  ( (
ph  /\  ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  ->  (
( F `  C
) `  k )  =  0 )
232 ssrab2 3420 . . . . . 6  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  C_  ( 1 ... J
)
233232, 11sstri 3349 . . . . 5  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  C_  RR
234233a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  C_  RR )
235 fzfi 11303 . . . . . 6  |-  ( 1 ... J )  e. 
Fin
236 ssfi 7321 . . . . . 6  |-  ( ( ( 1 ... J
)  e.  Fin  /\  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  C_  ( 1 ... J
) )  ->  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  e.  Fin )
237235, 232, 236mp2an 654 . . . . 5  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  e.  Fin
238237a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  e.  Fin )
239 rabn0 3639 . . . . 5  |-  ( { i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  =/=  (/)  <->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `
 C ) `  i ) )
24065, 239sylibr 204 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  =/=  (/) )
241 fimaxre 9947 . . . 4  |-  ( ( { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  C_  RR  /\  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  e.  Fin  /\  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  =/=  (/) )  ->  E. k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } A. j  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } j  <_ 
k )
242234, 238, 240, 241syl3anc 1184 . . 3  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } A. j  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } j  <_ 
k )
243231, 242reximddv 23954 . 2  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  (
( F `  C
) `  k )  =  0 )
244 elrabi 3082 . . . 4  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  ->  k  e.  ( 1 ... J
) )
245244anim1i 552 . . 3  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  /\  ( ( F `  C ) `  k
)  =  0 )  ->  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  =  0 ) )
246245reximi2 2804 . 2  |-  ( E. k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  (
( F `  C
) `  k )  =  0  ->  E. k  e.  ( 1 ... J
) ( ( F `
 C ) `  k )  =  0 )
247243, 246syl 16 1  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   #chash 11610
This theorem is referenced by:  ballotlem1c  24757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-hash 11611
  Copyright terms: Public domain W3C validator