Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfelz Unicode version

Theorem ballotlemfelz 23065
Description:  ( F `  C ) has values in  ZZ. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfval.c  |-  ( ph  ->  C  e.  O )
ballotlemfval.j  |-  ( ph  ->  J  e.  ZZ )
Assertion
Ref Expression
ballotlemfelz  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  ZZ )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i    i, J    ph, i
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfelz
StepHypRef Expression
1 ballotth.m . . 3  |-  M  e.  NN
2 ballotth.n . . 3  |-  N  e.  NN
3 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotlemfval.c . . 3  |-  ( ph  ->  C  e.  O )
7 ballotlemfval.j . . 3  |-  ( ph  ->  J  e.  ZZ )
81, 2, 3, 4, 5, 6, 7ballotlemfval 23064 . 2  |-  ( ph  ->  ( ( F `  C ) `  J
)  =  ( (
# `  ( (
1 ... J )  i^i 
C ) )  -  ( # `  ( ( 1 ... J ) 
\  C ) ) ) )
9 fzfi 11050 . . . . . . 7  |-  ( 1 ... J )  e. 
Fin
10 inss1 3402 . . . . . . 7  |-  ( ( 1 ... J )  i^i  C )  C_  ( 1 ... J
)
11 ssfi 7099 . . . . . . 7  |-  ( ( ( 1 ... J
)  e.  Fin  /\  ( ( 1 ... J )  i^i  C
)  C_  ( 1 ... J ) )  ->  ( ( 1 ... J )  i^i 
C )  e.  Fin )
129, 10, 11mp2an 653 . . . . . 6  |-  ( ( 1 ... J )  i^i  C )  e. 
Fin
13 hashcl 11366 . . . . . 6  |-  ( ( ( 1 ... J
)  i^i  C )  e.  Fin  ->  ( # `  (
( 1 ... J
)  i^i  C )
)  e.  NN0 )
1412, 13ax-mp 8 . . . . 5  |-  ( # `  ( ( 1 ... J )  i^i  C
) )  e.  NN0
1514nn0zi 10064 . . . 4  |-  ( # `  ( ( 1 ... J )  i^i  C
) )  e.  ZZ
16 difss 3316 . . . . . . 7  |-  ( ( 1 ... J ) 
\  C )  C_  ( 1 ... J
)
17 ssfi 7099 . . . . . . 7  |-  ( ( ( 1 ... J
)  e.  Fin  /\  ( ( 1 ... J )  \  C
)  C_  ( 1 ... J ) )  ->  ( ( 1 ... J )  \  C )  e.  Fin )
189, 16, 17mp2an 653 . . . . . 6  |-  ( ( 1 ... J ) 
\  C )  e. 
Fin
19 hashcl 11366 . . . . . 6  |-  ( ( ( 1 ... J
)  \  C )  e.  Fin  ->  ( # `  (
( 1 ... J
)  \  C )
)  e.  NN0 )
2018, 19ax-mp 8 . . . . 5  |-  ( # `  ( ( 1 ... J )  \  C
) )  e.  NN0
2120nn0zi 10064 . . . 4  |-  ( # `  ( ( 1 ... J )  \  C
) )  e.  ZZ
22 zsubcl 10077 . . . 4  |-  ( ( ( # `  (
( 1 ... J
)  i^i  C )
)  e.  ZZ  /\  ( # `  ( ( 1 ... J ) 
\  C ) )  e.  ZZ )  -> 
( ( # `  (
( 1 ... J
)  i^i  C )
)  -  ( # `  ( ( 1 ... J )  \  C
) ) )  e.  ZZ )
2315, 21, 22mp2an 653 . . 3  |-  ( (
# `  ( (
1 ... J )  i^i 
C ) )  -  ( # `  ( ( 1 ... J ) 
\  C ) ) )  e.  ZZ
24 eleq1 2356 . . 3  |-  ( ( ( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) )  ->  ( ( ( F `  C ) `
 J )  e.  ZZ  <->  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) )  e.  ZZ ) )
2523, 24mpbiri 224 . 2  |-  ( ( ( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) )  ->  ( ( F `
 C ) `  J )  e.  ZZ )
268, 25syl 15 1  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   {crab 2560    \ cdif 3162    i^i cin 3164    C_ wss 3165   ~Pcpw 3638    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   Fincfn 6879   1c1 8754    + caddc 8756    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ...cfz 10798   #chash 11353
This theorem is referenced by:  ballotlemfc0  23067  ballotlemfcc  23068  ballotlemodife  23072  ballotlemic  23081  ballotlem1c  23082  ballotlemfrceq  23103  ballotlemfrcn0  23104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354
  Copyright terms: Public domain W3C validator