Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfg Unicode version

Theorem ballotlemfg 23100
Description: Express the value of  ( F `
 C ) in terms of  .^. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemfg  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  J )  =  ( C  .^  ( 1 ... J ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
v, u, C    u, I, v    u, J, v   
u, R, v    u, S, v    i, J
Allowed substitution hints:    C( x, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    J( x, c)    M( x, v, u)    N( x, v, u)    O( x, v, u)

Proof of Theorem ballotlemfg
StepHypRef Expression
1 ballotth.m . . 3  |-  M  e.  NN
2 ballotth.n . . 3  |-  N  e.  NN
3 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 eldifi 3311 . . . 4  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
76adantr 451 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  C  e.  O
)
8 elfzelz 10814 . . . 4  |-  ( J  e.  ( 0 ... ( M  +  N
) )  ->  J  e.  ZZ )
98adantl 452 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  J  e.  ZZ )
101, 2, 3, 4, 5, 7, 9ballotlemfval 23064 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  J )  =  ( ( # `  (
( 1 ... J
)  i^i  C )
)  -  ( # `  ( ( 1 ... J )  \  C
) ) ) )
11 fzfi 11050 . . . . 5  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
121, 2, 3ballotlemelo 23062 . . . . . 6  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
1312simplbi 446 . . . . 5  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
14 ssfi 7099 . . . . 5  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  ->  C  e.  Fin )
1511, 13, 14sylancr 644 . . . 4  |-  ( C  e.  O  ->  C  e.  Fin )
167, 15syl 15 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  C  e.  Fin )
17 fzfid 11051 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  ( 1 ... J )  e.  Fin )
18 ballotth.e . . . 4  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
19 ballotth.mgtn . . . 4  |-  N  < 
M
20 ballotth.i . . . 4  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
21 ballotth.s . . . 4  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
22 ballotth.r . . . 4  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
23 ballotlemg . . . 4  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
241, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23ballotlemgval 23098 . . 3  |-  ( ( C  e.  Fin  /\  ( 1 ... J
)  e.  Fin )  ->  ( C  .^  (
1 ... J ) )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
2516, 17, 24syl2anc 642 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  ( C  .^  ( 1 ... J
) )  =  ( ( # `  (
( 1 ... J
)  i^i  C )
)  -  ( # `  ( ( 1 ... J )  \  C
) ) ) )
2610, 25eqtr4d 2331 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  J )  =  ( C  .^  ( 1 ... J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560    \ cdif 3162    i^i cin 3164    C_ wss 3165   ifcif 3578   ~Pcpw 3638   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   "cima 4708   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Fincfn 6879   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   ZZcz 10040   ...cfz 10798   #chash 11353
This theorem is referenced by:  ballotlemfrci  23102  ballotlemfrceq  23103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator