Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfp1 Structured version   Unicode version

Theorem ballotlemfp1 24749
Description: If the  J th ballot is for A,  ( F `  C ) goes up 1. If the  J th ballot is for B,  ( F `  C ) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfp1.c  |-  ( ph  ->  C  e.  O )
ballotlemfp1.j  |-  ( ph  ->  J  e.  NN )
Assertion
Ref Expression
ballotlemfp1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i    i, J    ph, i
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfp1
StepHypRef Expression
1 ballotth.m . . . . . 6  |-  M  e.  NN
2 ballotth.n . . . . . 6  |-  N  e.  NN
3 ballotth.o . . . . . 6  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . 6  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . 6  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotlemfp1.c . . . . . 6  |-  ( ph  ->  C  e.  O )
7 ballotlemfp1.j . . . . . . 7  |-  ( ph  ->  J  e.  NN )
87nnzd 10374 . . . . . 6  |-  ( ph  ->  J  e.  ZZ )
91, 2, 3, 4, 5, 6, 8ballotlemfval 24747 . . . . 5  |-  ( ph  ->  ( ( F `  C ) `  J
)  =  ( (
# `  ( (
1 ... J )  i^i 
C ) )  -  ( # `  ( ( 1 ... J ) 
\  C ) ) ) )
109adantr 452 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
11 elnnuz 10522 . . . . . . . . . 10  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
127, 11sylib 189 . . . . . . . . 9  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
13 fzspl 24149 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( 1 ... J )  =  ( ( 1 ... ( J  -  1 ) )  u.  { J } ) )
1413ineq1d 3541 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
) )
15 indir 3589 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) )
1614, 15syl6eq 2484 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  i^i 
C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) )
1712, 16syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  i^i  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
1817adantr 452 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )
19 disjsn 3868 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  -.  J  e.  C )
20 incom 3533 . . . . . . . . . . . 12  |-  ( C  i^i  { J }
)  =  ( { J }  i^i  C
)
2120eqeq1i 2443 . . . . . . . . . . 11  |-  ( ( C  i^i  { J } )  =  (/)  <->  ( { J }  i^i  C
)  =  (/) )
2219, 21bitr3i 243 . . . . . . . . . 10  |-  ( -.  J  e.  C  <->  ( { J }  i^i  C )  =  (/) )
2322biimpi 187 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  i^i  C )  =  (/) )
2423adantl 453 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( { J }  i^i  C
)  =  (/) )
2524uneq2d 3501 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) ) )
26 un0 3652 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C )
2726a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )
2818, 25, 273eqtrd 2472 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  i^i  C )  =  ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )
2928fveq2d 5732 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
3013difeq1d 3464 . . . . . . . . . 10  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
) )
31 difundir 3594 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  u.  { J } )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) )
3230, 31syl6eq 2484 . . . . . . . . 9  |-  ( J  e.  ( ZZ>= `  1
)  ->  ( (
1 ... J )  \  C )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) )
3312, 32syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ... J )  \  C
)  =  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  ( { J }  \  C ) ) )
34 disj3 3672 . . . . . . . . . . 11  |-  ( ( { J }  i^i  C )  =  (/)  <->  { J }  =  ( { J }  \  C ) )
3523, 34sylib 189 . . . . . . . . . 10  |-  ( -.  J  e.  C  ->  { J }  =  ( { J }  \  C ) )
3635eqcomd 2441 . . . . . . . . 9  |-  ( -.  J  e.  C  -> 
( { J }  \  C )  =  { J } )
3736uneq2d 3501 . . . . . . . 8  |-  ( -.  J  e.  C  -> 
( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )
3833, 37sylan9eq 2488 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( 1 ... J
)  \  C )  =  ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )
3938fveq2d 5732 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) ) )
408adantr 452 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  J  e.  ZZ )
41 uzid 10500 . . . . . . . . . . 11  |-  ( J  e.  ZZ  ->  J  e.  ( ZZ>= `  J )
)
42 uznfz 11130 . . . . . . . . . . 11  |-  ( J  e.  ( ZZ>= `  J
)  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
438, 41, 423syl 19 . . . . . . . . . 10  |-  ( ph  ->  -.  J  e.  ( 1 ... ( J  -  1 ) ) )
4443adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
45 difss 3474 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  C_  ( 1 ... ( J  -  1 ) )
4645sseli 3344 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  \  C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
4744, 46nsyl 115 . . . . . . . 8  |-  ( (
ph  /\  -.  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  \  C ) )
48 fzfi 11311 . . . . . . . . 9  |-  ( 1 ... ( J  - 
1 ) )  e. 
Fin
49 ssfi 7329 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  \  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin )
5048, 45, 49mp2an 654 . . . . . . . 8  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
5147, 50jctil 524 . . . . . . 7  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
52 hashunsng 11665 . . . . . . 7  |-  ( J  e.  ZZ  ->  (
( ( ( 1 ... ( J  - 
1 ) )  \  C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  \  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) ) )
5340, 51, 52sylc 58 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) )
5439, 53eqtrd 2468 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) )  +  1 ) )
5529, 54oveq12d 6099 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
56 1z 10311 . . . . . . . . . 10  |-  1  e.  ZZ
5756a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
588, 57zsubcld 10380 . . . . . . . 8  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
591, 2, 3, 4, 5, 6, 58ballotlemfval 24747 . . . . . . 7  |-  ( ph  ->  ( ( F `  C ) `  ( J  -  1 ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) ) )
6059adantr 452 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
6160oveq1d 6096 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  -  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  -  1 ) )
62 inss1 3561 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  C_  ( 1 ... ( J  -  1 ) )
63 ssfi 7329 . . . . . . . . . 10  |-  ( ( ( 1 ... ( J  -  1 ) )  e.  Fin  /\  ( ( 1 ... ( J  -  1 ) )  i^i  C
)  C_  ( 1 ... ( J  - 
1 ) ) )  ->  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin )
6448, 62, 63mp2an 654 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) )  i^i  C )  e. 
Fin
65 hashcl 11639 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e. 
NN0 )
6664, 65ax-mp 8 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  NN0
6766nn0cni 10233 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  e.  CC
6867a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
69 diffi 7339 . . . . . . . . . 10  |-  ( ( 1 ... ( J  -  1 ) )  e.  Fin  ->  (
( 1 ... ( J  -  1 ) )  \  C )  e.  Fin )
7048, 69ax-mp 8 . . . . . . . . 9  |-  ( ( 1 ... ( J  -  1 ) ) 
\  C )  e. 
Fin
71 hashcl 11639 . . . . . . . . 9  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  e.  Fin  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e. 
NN0 )
7270, 71ax-mp 8 . . . . . . . 8  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  NN0
7372nn0cni 10233 . . . . . . 7  |-  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  e.  CC
7473a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
75 ax-1cn 9048 . . . . . . 7  |-  1  e.  CC
7675a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  J  e.  C )  ->  1  e.  CC )
7768, 74, 76subsub4d 9442 . . . . 5  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  - 
1 )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) )  +  1 ) ) )
7861, 77eqtr2d 2469 . . . 4  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) )  +  1 ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) )
7910, 55, 783eqtrd 2472 . . 3  |-  ( (
ph  /\  -.  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  - 
1 ) )
8079ex 424 . 2  |-  ( ph  ->  ( -.  J  e.  C  ->  ( ( F `  C ) `  J )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  -  1 ) ) )
819adantr 452 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( # `  ( ( 1 ... J )  i^i  C
) )  -  ( # `
 ( ( 1 ... J )  \  C ) ) ) )
8217fveq2d 5732 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  i^i  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  u.  ( { J }  i^i  C
) ) ) )
8382adantr 452 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) ) ) )
84 snssi 3942 . . . . . . . . . 10  |-  ( J  e.  C  ->  { J }  C_  C )
85 df-ss 3334 . . . . . . . . . 10  |-  ( { J }  C_  C  <->  ( { J }  i^i  C )  =  { J } )
8684, 85sylib 189 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  i^i  C
)  =  { J } )
8786uneq2d 3501 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  ( { J }  i^i  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )
8887fveq2d 5732 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
8988adantl 453 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u.  ( { J }  i^i  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) ) )
90 simpr 448 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  C )
918adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  C )  ->  J  e.  ZZ )
9291, 41, 423syl 19 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( 1 ... ( J  - 
1 ) ) )
9362sseli 3344 . . . . . . . . 9  |-  ( J  e.  ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  ->  J  e.  ( 1 ... ( J  -  1 ) ) )
9492, 93nsyl 115 . . . . . . . 8  |-  ( (
ph  /\  J  e.  C )  ->  -.  J  e.  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )
9594, 64jctil 524 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  e.  Fin  /\  -.  J  e.  (
( 1 ... ( J  -  1 ) )  i^i  C ) ) )
96 hashunsng 11665 . . . . . . 7  |-  ( J  e.  C  ->  (
( ( ( 1 ... ( J  - 
1 ) )  i^i 
C )  e.  Fin  /\ 
-.  J  e.  ( ( 1 ... ( J  -  1 ) )  i^i  C ) )  ->  ( # `  (
( ( 1 ... ( J  -  1 ) )  i^i  C
)  u.  { J } ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) ) )
9790, 95, 96sylc 58 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) )  i^i  C )  u. 
{ J } ) )  =  ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  +  1 ) )
9883, 89, 973eqtrd 2472 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  i^i 
C ) )  =  ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 ) )
9933fveq2d 5732 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... J
)  \  C )
)  =  ( # `  ( ( ( 1 ... ( J  - 
1 ) )  \  C )  u.  ( { J }  \  C
) ) ) )
10099adantr 452 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) ) ) )
101 difin2 3603 . . . . . . . . . . 11  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  ( ( C  \  C
)  i^i  { J } ) )
102 difid 3696 . . . . . . . . . . . . 13  |-  ( C 
\  C )  =  (/)
103102ineq1i 3538 . . . . . . . . . . . 12  |-  ( ( C  \  C )  i^i  { J }
)  =  ( (/)  i^i 
{ J } )
104 incom 3533 . . . . . . . . . . . 12  |-  ( (/)  i^i 
{ J } )  =  ( { J }  i^i  (/) )
105 in0 3653 . . . . . . . . . . . 12  |-  ( { J }  i^i  (/) )  =  (/)
106103, 104, 1053eqtri 2460 . . . . . . . . . . 11  |-  ( ( C  \  C )  i^i  { J }
)  =  (/)
107101, 106syl6eq 2484 . . . . . . . . . 10  |-  ( { J }  C_  C  ->  ( { J }  \  C )  =  (/) )
10884, 107syl 16 . . . . . . . . 9  |-  ( J  e.  C  ->  ( { J }  \  C
)  =  (/) )
109108uneq2d 3501 . . . . . . . 8  |-  ( J  e.  C  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  ( { J }  \  C
) )  =  ( ( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) )
110109fveq2d 5732 . . . . . . 7  |-  ( J  e.  C  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
111110adantl 453 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  ( { J }  \  C ) ) )  =  ( # `  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) ) ) )
112 un0 3652 . . . . . . . 8  |-  ( ( ( 1 ... ( J  -  1 ) )  \  C )  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C )
113112a1i 11 . . . . . . 7  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( 1 ... ( J  -  1 ) )  \  C
)  u.  (/) )  =  ( ( 1 ... ( J  -  1 ) )  \  C
) )
114113fveq2d 5732 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( ( 1 ... ( J  -  1 ) ) 
\  C )  u.  (/) ) )  =  (
# `  ( (
1 ... ( J  - 
1 ) )  \  C ) ) )
115100, 111, 1143eqtrd 2472 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... J )  \  C ) )  =  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )
11698, 115oveq12d 6099 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( # `  ( ( 1 ... J )  i^i  C ) )  -  ( # `  (
( 1 ... J
)  \  C )
) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) ) )
11767a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  i^i 
C ) )  e.  CC )
11875a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  1  e.  CC )
11973a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) )  e.  CC )
120117, 118, 119addsubd 9432 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) )  \  C
) ) )  +  1 ) )
12159adantr 452 . . . . . 6  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  ( J  -  1 ) )  =  ( ( # `  ( ( 1 ... ( J  -  1 ) )  i^i  C
) )  -  ( # `
 ( ( 1 ... ( J  - 
1 ) )  \  C ) ) ) )
122121oveq1d 6096 . . . . 5  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( F `  C ) `  ( J  -  1 ) )  +  1 )  =  ( ( (
# `  ( (
1 ... ( J  - 
1 ) )  i^i 
C ) )  -  ( # `  ( ( 1 ... ( J  -  1 ) ) 
\  C ) ) )  +  1 ) )
123120, 122eqtr4d 2471 . . . 4  |-  ( (
ph  /\  J  e.  C )  ->  (
( ( # `  (
( 1 ... ( J  -  1 ) )  i^i  C ) )  +  1 )  -  ( # `  (
( 1 ... ( J  -  1 ) )  \  C ) ) )  =  ( ( ( F `  C ) `  ( J  -  1 ) )  +  1 ) )
12481, 116, 1233eqtrd 2472 . . 3  |-  ( (
ph  /\  J  e.  C )  ->  (
( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) )
125124ex 424 . 2  |-  ( ph  ->  ( J  e.  C  ->  ( ( F `  C ) `  J
)  =  ( ( ( F `  C
) `  ( J  -  1 ) )  +  1 ) ) )
12680, 125jca 519 1  |-  ( ph  ->  ( ( -.  J  e.  C  ->  ( ( F `  C ) `
 J )  =  ( ( ( F `
 C ) `  ( J  -  1
) )  -  1 ) )  /\  ( J  e.  C  ->  ( ( F `  C
) `  J )  =  ( ( ( F `  C ) `
 ( J  - 
1 ) )  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   1c1 8991    + caddc 8993    - cmin 9291    / cdiv 9677   NNcn 10000   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   ...cfz 11043   #chash 11618
This theorem is referenced by:  ballotlemfc0  24750  ballotlemfcc  24751  ballotlem4  24756  ballotlemi1  24760  ballotlemii  24761  ballotlemic  24764  ballotlem1c  24765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-hash 11619
  Copyright terms: Public domain W3C validator