Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgval Unicode version

Theorem ballotlemgval 23098
Description: Expand the value of  .^. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemgval  |-  ( ( U  e.  Fin  /\  V  e.  Fin )  ->  ( U  .^  V
)  =  ( (
# `  ( V  i^i  U ) )  -  ( # `  ( V 
\  U ) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k   
i, E, k    k, I, c    E, c    i, I, c    S, k, i, c    R, i    v, u, I    u, R, v   
u, S, v    u, U, v    u, V, v
Allowed substitution hints:    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    U( x, i, k, c)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    M( x, v, u)    N( x, v, u)    O( x, v, u)    V( x, i, k, c)

Proof of Theorem ballotlemgval
StepHypRef Expression
1 ineq2 3377 . . . 4  |-  ( u  =  U  ->  (
v  i^i  u )  =  ( v  i^i 
U ) )
21fveq2d 5545 . . 3  |-  ( u  =  U  ->  ( # `
 ( v  i^i  u ) )  =  ( # `  (
v  i^i  U )
) )
3 difeq2 3301 . . . 4  |-  ( u  =  U  ->  (
v  \  u )  =  ( v  \  U ) )
43fveq2d 5545 . . 3  |-  ( u  =  U  ->  ( # `
 ( v  \  u ) )  =  ( # `  (
v  \  U )
) )
52, 4oveq12d 5892 . 2  |-  ( u  =  U  ->  (
( # `  ( v  i^i  u ) )  -  ( # `  (
v  \  u )
) )  =  ( ( # `  (
v  i^i  U )
)  -  ( # `  ( v  \  U
) ) ) )
6 ineq1 3376 . . . 4  |-  ( v  =  V  ->  (
v  i^i  U )  =  ( V  i^i  U ) )
76fveq2d 5545 . . 3  |-  ( v  =  V  ->  ( # `
 ( v  i^i 
U ) )  =  ( # `  ( V  i^i  U ) ) )
8 difeq1 3300 . . . 4  |-  ( v  =  V  ->  (
v  \  U )  =  ( V  \  U ) )
98fveq2d 5545 . . 3  |-  ( v  =  V  ->  ( # `
 ( v  \  U ) )  =  ( # `  ( V  \  U ) ) )
107, 9oveq12d 5892 . 2  |-  ( v  =  V  ->  (
( # `  ( v  i^i  U ) )  -  ( # `  (
v  \  U )
) )  =  ( ( # `  ( V  i^i  U ) )  -  ( # `  ( V  \  U ) ) ) )
11 ballotlemg . 2  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
12 ovex 5899 . 2  |-  ( (
# `  ( V  i^i  U ) )  -  ( # `  ( V 
\  U ) ) )  e.  _V
135, 10, 11, 12ovmpt2 5999 1  |-  ( ( U  e.  Fin  /\  V  e.  Fin )  ->  ( U  .^  V
)  =  ( (
# `  ( V  i^i  U ) )  -  ( # `  ( V 
\  U ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560    \ cdif 3162    i^i cin 3164   ifcif 3578   ~Pcpw 3638   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   "cima 4708   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Fincfn 6879   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   ZZcz 10040   ...cfz 10798   #chash 11353
This theorem is referenced by:  ballotlemgun  23099  ballotlemfg  23100  ballotlemfrc  23101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator