Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Unicode version

Theorem ballotlemodife 24755
Description: Elements of  ( O 
\  E ). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
Assertion
Ref Expression
ballotlemodife  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i
Allowed substitution hints:    C( x, c)    P( x, i, c)    E( x, i, c)    F( x)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemodife
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eldif 3330 . 2  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  -.  C  e.  E ) )
2 df-or 360 . . . 4  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
3 pm3.24 853 . . . . 5  |-  -.  ( C  e.  O  /\  -.  C  e.  O
)
43a1bi 328 . . . 4  |-  ( ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  ( C  e.  O  /\  -.  C  e.  O )  ->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
52, 4bitr4i 244 . . 3  |-  ( ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )  <-> 
( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
6 ballotth.m . . . . . . 7  |-  M  e.  NN
7 ballotth.n . . . . . . 7  |-  N  e.  NN
8 ballotth.o . . . . . . 7  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
9 ballotth.p . . . . . . 7  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
10 ballotth.f . . . . . . 7  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
11 ballotth.e . . . . . . 7  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
126, 7, 8, 9, 10, 11ballotleme 24754 . . . . . 6  |-  ( C  e.  E  <->  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
1312notbii 288 . . . . 5  |-  ( -.  C  e.  E  <->  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1413anbi2i 676 . . . 4  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
15 ianor 475 . . . . 5  |-  ( -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) )  <-> 
( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
1615anbi2i 676 . . . 4  |-  ( ( C  e.  O  /\  -.  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) )  <->  ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  C ) `
 i ) ) ) )
17 andi 838 . . . 4  |-  ( ( C  e.  O  /\  ( -.  C  e.  O  \/  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )  <->  ( ( C  e.  O  /\  -.  C  e.  O
)  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) ) )
1814, 16, 173bitri 263 . . 3  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( ( C  e.  O  /\  -.  C  e.  O )  \/  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) ) )
19 0p1e1 10093 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
2019oveq1i 6091 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  =  ( 1 ... ( M  +  N )
)
21 0z 10293 . . . . . . . . . . . . 13  |-  0  e.  ZZ
22 fzp1ss 11098 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( M  +  N ) ) 
C_  ( 0 ... ( M  +  N
) ) )
2321, 22ax-mp 8 . . . . . . . . . . . 12  |-  ( ( 0  +  1 ) ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2420, 23eqsstr3i 3379 . . . . . . . . . . 11  |-  ( 1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
)
2524a1i 11 . . . . . . . . . 10  |-  ( C  e.  O  ->  (
1 ... ( M  +  N ) )  C_  ( 0 ... ( M  +  N )
) )
2625sseld 3347 . . . . . . . . 9  |-  ( C  e.  O  ->  (
i  e.  ( 1 ... ( M  +  N ) )  -> 
i  e.  ( 0 ... ( M  +  N ) ) ) )
2726imdistani 672 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
28 simpl 444 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  C  e.  O
)
29 elfzelz 11059 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( M  +  N
) )  ->  j  e.  ZZ )
3029adantl 453 . . . . . . . . . . . 12  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  j  e.  ZZ )
316, 7, 8, 9, 10, 28, 30ballotlemfelz 24748 . . . . . . . . . . 11  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  ZZ )
3231zred 10375 . . . . . . . . . 10  |-  ( ( C  e.  O  /\  j  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  j )  e.  RR )
3332sbimi 1664 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  ->  [ i  / 
j ] ( ( F `  C ) `
 j )  e.  RR )
34 sban 2139 . . . . . . . . . 10  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( [ i  / 
j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N
) ) ) )
35 nfv 1629 . . . . . . . . . . . 12  |-  F/ j  C  e.  O
3635sbf 2117 . . . . . . . . . . 11  |-  ( [ i  /  j ] C  e.  O  <->  C  e.  O )
37 clelsb3 2538 . . . . . . . . . . 11  |-  ( [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) )  <->  i  e.  ( 0 ... ( M  +  N )
) )
3836, 37anbi12i 679 . . . . . . . . . 10  |-  ( ( [ i  /  j ] C  e.  O  /\  [ i  /  j ] j  e.  ( 0 ... ( M  +  N ) ) )  <->  ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N )
) ) )
3934, 38bitri 241 . . . . . . . . 9  |-  ( [ i  /  j ] ( C  e.  O  /\  j  e.  (
0 ... ( M  +  N ) ) )  <-> 
( C  e.  O  /\  i  e.  (
0 ... ( M  +  N ) ) ) )
40 nfv 1629 . . . . . . . . . 10  |-  F/ j ( ( F `  C ) `  i
)  e.  RR
41 fveq2 5728 . . . . . . . . . . 11  |-  ( j  =  i  ->  (
( F `  C
) `  j )  =  ( ( F `
 C ) `  i ) )
4241eleq1d 2502 . . . . . . . . . 10  |-  ( j  =  i  ->  (
( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR ) )
4340, 42sbie 2149 . . . . . . . . 9  |-  ( [ i  /  j ] ( ( F `  C ) `  j
)  e.  RR  <->  ( ( F `  C ) `  i )  e.  RR )
4433, 39, 433imtr3i 257 . . . . . . . 8  |-  ( ( C  e.  O  /\  i  e.  ( 0 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
4527, 44syl 16 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( F `
 C ) `  i )  e.  RR )
46 0re 9091 . . . . . . . 8  |-  0  e.  RR
4746a1i 11 . . . . . . 7  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  0  e.  RR )
4845, 47lenltd 9219 . . . . . 6  |-  ( ( C  e.  O  /\  i  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( ( F `  C ) `
 i )  <_ 
0  <->  -.  0  <  ( ( F `  C
) `  i )
) )
4948rexbidva 2722 . . . . 5  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  (
( F `  C
) `  i )
) )
50 rexnal 2716 . . . . 5  |-  ( E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  ( ( F `  C ) `
 i )  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
5149, 50syl6bb 253 . . . 4  |-  ( C  e.  O  ->  ( E. i  e.  (
1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
5251pm5.32i 619 . . 3  |-  ( ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N ) ) ( ( F `  C
) `  i )  <_  0 )  <->  ( C  e.  O  /\  -.  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `
 C ) `  i ) ) )
535, 18, 523bitr4i 269 . 2  |-  ( ( C  e.  O  /\  -.  C  e.  E
)  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
541, 53bitri 241 1  |-  ( C  e.  ( O  \  E )  <->  ( C  e.  O  /\  E. i  e.  ( 1 ... ( M  +  N )
) ( ( F `
 C ) `  i )  <_  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652   [wsb 1658    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709    \ cdif 3317    i^i cin 3319    C_ wss 3320   ~Pcpw 3799   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   ZZcz 10282   ...cfz 11043   #chash 11618
This theorem is referenced by:  ballotlem5  24757  ballotlemrc  24788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-hash 11619
  Copyright terms: Public domain W3C validator