Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Unicode version

Theorem ballotlemoex 24743
 Description: is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m
ballotth.n
ballotth.o
Assertion
Ref Expression
ballotlemoex
Distinct variable groups:   ,   ,   ,

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ovex 6106 . . 3
21pwex 4382 . 2
3 ballotth.o . . 3
4 ssrab2 3428 . . 3
53, 4eqsstri 3378 . 2
62, 5ssexi 4348 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  crab 2709  cvv 2956  cpw 3799  cfv 5454  (class class class)co 6081  c1 8991   caddc 8993  cn 10000  cfz 11043  chash 11618 This theorem is referenced by:  ballotlem2  24746  ballotlem8  24794 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-pw 3801  df-sn 3820  df-pr 3821  df-uni 4016  df-iota 5418  df-fv 5462  df-ov 6084
 Copyright terms: Public domain W3C validator