Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrv1 Unicode version

Theorem ballotlemrv1 24347
Description: Value of  R before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlemrv1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <_  ( I `  C ) )  -> 
( J  e.  ( R `  C )  <-> 
( ( ( I `
 C )  +  1 )  -  J
)  e.  C ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    R( x, i, k, c)    S( x)    E( x)    F( x)    I( x)    J( x, i, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemrv1
StepHypRef Expression
1 ballotth.m . . . 4  |-  M  e.  NN
2 ballotth.n . . . 4  |-  N  e.  NN
3 ballotth.o . . . 4  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . 4  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . 4  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . . 4  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . . 4  |-  N  < 
M
8 ballotth.i . . . 4  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
9 ballotth.s . . . 4  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
10 ballotth.r . . . 4  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrv 24346 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( J  e.  ( R `  C
)  <->  if ( J  <_ 
( I `  C
) ,  ( ( ( I `  C
)  +  1 )  -  J ) ,  J )  e.  C
) )
12113adant3 976 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <_  ( I `  C ) )  -> 
( J  e.  ( R `  C )  <-> 
if ( J  <_ 
( I `  C
) ,  ( ( ( I `  C
)  +  1 )  -  J ) ,  J )  e.  C
) )
13 iftrue 3660 . . . 4  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
1413eleq1d 2432 . . 3  |-  ( J  <_  ( I `  C )  ->  ( if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
)  e.  C  <->  ( (
( I `  C
)  +  1 )  -  J )  e.  C ) )
15143ad2ant3 979 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <_  ( I `  C ) )  -> 
( if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  e.  C  <->  ( ( ( I `  C )  +  1 )  -  J )  e.  C
) )
1612, 15bitrd 244 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <_  ( I `  C ) )  -> 
( J  e.  ( R `  C )  <-> 
( ( ( I `
 C )  +  1 )  -  J
)  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   {crab 2632    \ cdif 3235    i^i cin 3237   ifcif 3654   ~Pcpw 3714   class class class wbr 4125    e. cmpt 4179   `'ccnv 4791   "cima 4795   ` cfv 5358  (class class class)co 5981   supcsup 7340   RRcr 8883   0cc0 8884   1c1 8885    + caddc 8887    < clt 9014    <_ cle 9015    - cmin 9184    / cdiv 9570   NNcn 9893   ZZcz 10175   ...cfz 10935   #chash 11505
This theorem is referenced by:  ballotlem1ri  24361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-fz 10936  df-hash 11506
  Copyright terms: Public domain W3C validator