Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsdom Unicode version

Theorem ballotlemsdom 23070
Description: Domain of  S for a given counting  C. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsdom  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, k, c)    E( x)    F( x)    I( x)    J( x, i, k, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsdom
StepHypRef Expression
1 ballotth.m . . 3  |-  M  e.  NN
2 ballotth.n . . 3  |-  N  e.  NN
3 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . 3  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . 3  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . 3  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . 3  |-  N  < 
M
8 ballotth.i . . 3  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
9 ballotth.s . . 3  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 23068 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
11 fzssuz 10832 . . . . . . . 8  |-  ( 1 ... ( M  +  N ) )  C_  ( ZZ>= `  1 )
12 uzssz 10247 . . . . . . . 8  |-  ( ZZ>= ` 
1 )  C_  ZZ
1311, 12sstri 3188 . . . . . . 7  |-  ( 1 ... ( M  +  N ) )  C_  ZZ
141, 2, 3, 4, 5, 6, 7, 8ballotlemiex 23060 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1514simpld 445 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
1613, 15sseldi 3178 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
1716ad2antrr 706 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  e.  ZZ )
181, 2pm3.2i 441 . . . . . . . 8  |-  ( M  e.  NN  /\  N  e.  NN )
19 nnaddcl 9768 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
2018, 19ax-mp 8 . . . . . . 7  |-  ( M  +  N )  e.  NN
2120nnzi 10047 . . . . . 6  |-  ( M  +  N )  e.  ZZ
2221a1i 10 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  ( M  +  N )  e.  ZZ )
2317zred 10117 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  e.  RR )
2422zred 10117 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  ( M  +  N )  e.  RR )
2523leidd 9339 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  <_  ( I `  C
) )
2615ad2antrr 706 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
27 elfzle2 10800 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
2826, 27syl 15 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  <_  ( M  +  N
) )
2923, 23, 24, 25, 28letrd 8973 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
I `  C )  <_  ( M  +  N
) )
30 eluz2 10236 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  <->  ( ( I `
 C )  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  ( I `
 C )  <_ 
( M  +  N
) ) )
31 fzss2 10831 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
I `  C )
)  ->  ( 1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
3230, 31sylbir 204 . . . . 5  |-  ( ( ( I `  C
)  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  ( I `  C
)  <_  ( M  +  N ) )  -> 
( 1 ... (
I `  C )
)  C_  ( 1 ... ( M  +  N ) ) )
3317, 22, 29, 32syl3anc 1182 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
1 ... ( I `  C ) )  C_  ( 1 ... ( M  +  N )
) )
34 1z 10053 . . . . . . . . 9  |-  1  e.  ZZ
3534a1i 10 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  1  e.  ZZ )
36 simplr 731 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  J  e.  ( 1 ... ( M  +  N )
) )
3713, 36sseldi 3178 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  J  e.  ZZ )
3835, 17, 373jca 1132 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  J  e.  ZZ )
)
39 elfzle1 10799 . . . . . . . 8  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  1  <_  J )
4036, 39syl 15 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  1  <_  J )
41 simpr 447 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  J  <_  ( I `  C
) )
42 elfz2 10789 . . . . . . . 8  |-  ( J  e.  ( 1 ... ( I `  C
) )  <->  ( (
1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( I `
 C ) ) ) )
4342biimpri 197 . . . . . . 7  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( I `
 C ) ) )  ->  J  e.  ( 1 ... (
I `  C )
) )
4438, 40, 41, 43syl12anc 1180 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  J  e.  ( 1 ... (
I `  C )
) )
45 fzrev3i 10850 . . . . . 6  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
( 1  +  ( I `  C ) )  -  J )  e.  ( 1 ... ( I `  C
) ) )
4644, 45syl 15 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
( 1  +  ( I `  C ) )  -  J )  e.  ( 1 ... ( I `  C
) ) )
47 ax-1cn 8795 . . . . . . . . . 10  |-  1  e.  CC
4847a1i 10 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  1  e.  CC )
4916zcnd 10118 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  CC )
5048, 49addcomd 9014 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
1  +  ( I `
 C ) )  =  ( ( I `
 C )  +  1 ) )
5150oveq1d 5873 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( 1  +  ( I `  C ) )  -  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
5251eleq1d 2349 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
( ( 1  +  ( I `  C
) )  -  J
)  e.  ( 1 ... ( I `  C ) )  <->  ( (
( I `  C
)  +  1 )  -  J )  e.  ( 1 ... (
I `  C )
) ) )
5352ad2antrr 706 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
( ( 1  +  ( I `  C
) )  -  J
)  e.  ( 1 ... ( I `  C ) )  <->  ( (
( I `  C
)  +  1 )  -  J )  e.  ( 1 ... (
I `  C )
) ) )
5446, 53mpbid 201 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
( ( I `  C )  +  1 )  -  J )  e.  ( 1 ... ( I `  C
) ) )
5533, 54sseldd 3181 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  J  <_ 
( I `  C
) )  ->  (
( ( I `  C )  +  1 )  -  J )  e.  ( 1 ... ( M  +  N
) ) )
56 simplr 731 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  /\  -.  J  <_  ( I `  C
) )  ->  J  e.  ( 1 ... ( M  +  N )
) )
5755, 56ifclda 3592 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  e.  ( 1 ... ( M  +  N )
) )
5810, 57eqeltrd 2357 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152   ifcif 3565   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   #chash 11337
This theorem is referenced by:  ballotlemsel1i  23071  ballotlemsf1o  23072  ballotlemfrceq  23087  ballotlemfrcn0  23088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338
  Copyright terms: Public domain W3C validator