Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsgt1 Unicode version

Theorem ballotlemsgt1 23942
Description:  S maps values less than  (
I `  C ) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsgt1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <  ( ( S `  C ) `  J ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, k, c)    E( x)    F( x)    I( x)    J( x, i, k, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsgt1
StepHypRef Expression
1 elfznn 10866 . . . . . 6  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  J  e.  NN )
21nnzd 10163 . . . . 5  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  J  e.  ZZ )
323ad2ant2 977 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  ZZ )
43zred 10164 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  RR )
5 simp1 955 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  C  e.  ( O  \  E ) )
6 ballotth.m . . . . . . . . 9  |-  M  e.  NN
7 ballotth.n . . . . . . . . 9  |-  N  e.  NN
8 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
9 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
10 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
11 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
12 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
13 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
146, 7, 8, 9, 10, 11, 12, 13ballotlemiex 23933 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1514simpld 445 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
16 elfzelz 10845 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
1715, 16syl 15 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
185, 17syl 15 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  ZZ )
1918zred 10164 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  RR )
20 1re 8882 . . . . 5  |-  1  e.  RR
2120a1i 10 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  RR )
2219, 21readdcld 8907 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( I `  C )  +  1 )  e.  RR )
23 simp3 957 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <  ( I `  C ) )
2419recnd 8906 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  CC )
25 ax-1cn 8840 . . . . . 6  |-  1  e.  CC
2625a1i 10 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  CC )
2724, 26pncand 9203 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( I `
 C )  +  1 )  -  1 )  =  ( I `
 C ) )
2823, 27breqtrrd 4086 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <  ( ( ( I `  C )  +  1 )  - 
1 ) )
29 ltsub13 9300 . . . . 5  |-  ( ( J  e.  RR  /\  ( ( I `  C )  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( J  <  (
( ( I `  C )  +  1 )  -  1 )  <->  1  <  ( ( ( I `  C
)  +  1 )  -  J ) ) )
3029biimpd 198 . . . 4  |-  ( ( J  e.  RR  /\  ( ( I `  C )  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( J  <  (
( ( I `  C )  +  1 )  -  1 )  ->  1  <  (
( ( I `  C )  +  1 )  -  J ) ) )
3130imp 418 . . 3  |-  ( ( ( J  e.  RR  /\  ( ( I `  C )  +  1 )  e.  RR  /\  1  e.  RR )  /\  J  <  ( ( ( I `  C
)  +  1 )  -  1 ) )  ->  1  <  (
( ( I `  C )  +  1 )  -  J ) )
324, 22, 21, 28, 31syl31anc 1185 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <  ( (
( I `  C
)  +  1 )  -  J ) )
33 ballotth.s . . . . 5  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
346, 7, 8, 9, 10, 11, 12, 13, 33ballotlemsv 23941 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
35343adant3 975 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  =  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J ) )
36 ltle 8955 . . . . . 6  |-  ( ( J  e.  RR  /\  ( I `  C
)  e.  RR )  ->  ( J  < 
( I `  C
)  ->  J  <_  ( I `  C ) ) )
3736imp 418 . . . . 5  |-  ( ( ( J  e.  RR  /\  ( I `  C
)  e.  RR )  /\  J  <  (
I `  C )
)  ->  J  <_  ( I `  C ) )
384, 19, 23, 37syl21anc 1181 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <_  ( I `  C ) )
39 iftrue 3605 . . . 4  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
4038, 39syl 15 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
)  =  ( ( ( I `  C
)  +  1 )  -  J ) )
4135, 40eqtrd 2348 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  =  ( ( ( I `  C
)  +  1 )  -  J ) )
4232, 41breqtrrd 4086 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <  ( ( S `  C ) `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   A.wral 2577   {crab 2581    \ cdif 3183    i^i cin 3185   ifcif 3599   ~Pcpw 3659   class class class wbr 4060    e. cmpt 4114   `'ccnv 4725   ` cfv 5292  (class class class)co 5900   supcsup 7238   CCcc 8780   RRcr 8781   0cc0 8782   1c1 8783    + caddc 8785    < clt 8912    <_ cle 8913    - cmin 9082    / cdiv 9468   NNcn 9791   ZZcz 10071   ...cfz 10829   #chash 11384
This theorem is referenced by:  ballotlemfrcn0  23961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-sup 7239  df-card 7617  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-uz 10278  df-fz 10830  df-hash 11385
  Copyright terms: Public domain W3C validator