Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bamalip Structured version   Unicode version

Theorem bamalip 2407
 Description: "Bamalip", one of the syllogisms of Aristotelian logic. All is , all is , and exist, therefore some is . (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2388. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
bamalip.maj
bamalip.min
bamalip.e
Assertion
Ref Expression
bamalip

Proof of Theorem bamalip
StepHypRef Expression
1 bamalip.e . 2
2 bamalip.maj . . . . 5
32spi 1771 . . . 4
4 bamalip.min . . . . 5
54spi 1771 . . . 4
63, 5syl 16 . . 3
76ancri 537 . 2
81, 7eximii 1588 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550  wex 1551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-11 1763 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator