MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  barbari Structured version   Unicode version

Theorem barbari 2382
Description: "Barbari", one of the syllogisms of Aristotelian logic. All  ph is  ps, all  ch is  ph, and some  ch exist, therefore some  ch is  ps. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.)
Hypotheses
Ref Expression
barbari.maj  |-  A. x
( ph  ->  ps )
barbari.min  |-  A. x
( ch  ->  ph )
barbari.e  |-  E. x ch
Assertion
Ref Expression
barbari  |-  E. x
( ch  /\  ps )

Proof of Theorem barbari
StepHypRef Expression
1 barbari.e . 2  |-  E. x ch
2 barbari.maj . . . . 5  |-  A. x
( ph  ->  ps )
3 barbari.min . . . . 5  |-  A. x
( ch  ->  ph )
42, 3barbara 2378 . . . 4  |-  A. x
( ch  ->  ps )
54spi 1769 . . 3  |-  ( ch 
->  ps )
65ancli 535 . 2  |-  ( ch 
->  ( ch  /\  ps ) )
71, 6eximii 1587 1  |-  E. x
( ch  /\  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550
This theorem is referenced by:  celaront  2383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
  Copyright terms: Public domain W3C validator