Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  baroco Structured version   Unicode version

Theorem baroco 2387
 Description: "Baroco", one of the syllogisms of Aristotelian logic. All is , and some is not , therefore some is not . (In Aristotelian notation, AOO-2: PaM and SoM therefore SoP.) For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative." (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
baroco.maj
baroco.min
Assertion
Ref Expression
baroco

Proof of Theorem baroco
StepHypRef Expression
1 baroco.min . 2
2 baroco.maj . . . . 5
32spi 1769 . . . 4
43con3i 129 . . 3
54anim2i 553 . 2
61, 5eximii 1587 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359  wal 1549  wex 1550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
 Copyright terms: Public domain W3C validator