MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basdif0 Unicode version

Theorem basdif0 16707
Description: A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
basdif0  |-  ( ( B  \  { (/) } )  e.  TopBases  <->  B  e.  TopBases )

Proof of Theorem basdif0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3351 . . . 4  |-  B  C_  ( B  u.  { (/) } )
2 undif1 3542 . . . 4  |-  ( ( B  \  { (/) } )  u.  { (/) } )  =  ( B  u.  { (/) } )
31, 2sseqtr4i 3224 . . 3  |-  B  C_  ( ( B  \  { (/) } )  u. 
{ (/) } )
4 snex 4232 . . . 4  |-  { (/) }  e.  _V
5 unexg 4537 . . . 4  |-  ( ( ( B  \  { (/)
} )  e.  TopBases  /\  {
(/) }  e.  _V )  ->  ( ( B 
\  { (/) } )  u.  { (/) } )  e.  _V )
64, 5mpan2 652 . . 3  |-  ( ( B  \  { (/) } )  e.  TopBases  ->  (
( B  \  { (/)
} )  u.  { (/)
} )  e.  _V )
7 ssexg 4176 . . 3  |-  ( ( B  C_  ( ( B  \  { (/) } )  u.  { (/) } )  /\  ( ( B 
\  { (/) } )  u.  { (/) } )  e.  _V )  ->  B  e.  _V )
83, 6, 7sylancr 644 . 2  |-  ( ( B  \  { (/) } )  e.  TopBases  ->  B  e.  _V )
9 elex 2809 . 2  |-  ( B  e.  TopBases  ->  B  e.  _V )
10 indif1 3426 . . . . . . . . . . 11  |-  ( ( B  \  { (/) } )  i^i  ~P (
x  i^i  y )
)  =  ( ( B  i^i  ~P (
x  i^i  y )
)  \  { (/) } )
1110unieqi 3853 . . . . . . . . . 10  |-  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  =  U. ( ( B  i^i  ~P ( x  i^i  y
) )  \  { (/)
} )
12 unidif0 4199 . . . . . . . . . 10  |-  U. (
( B  i^i  ~P ( x  i^i  y
) )  \  { (/)
} )  =  U. ( B  i^i  ~P (
x  i^i  y )
)
1311, 12eqtri 2316 . . . . . . . . 9  |-  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  =  U. ( B  i^i  ~P (
x  i^i  y )
)
1413sseq2i 3216 . . . . . . . 8  |-  ( ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <-> 
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
1514ralbii 2580 . . . . . . 7  |-  ( A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
16 inss2 3403 . . . . . . . . . 10  |-  ( x  i^i  y )  C_  y
17 0ss 3496 . . . . . . . . . . 11  |-  (/)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )
18 inss2 3403 . . . . . . . . . . . . . 14  |-  ( B  i^i  { (/) } ) 
C_  { (/) }
1918sseli 3189 . . . . . . . . . . . . 13  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  e.  { (/) } )
20 elsni 3677 . . . . . . . . . . . . 13  |-  ( y  e.  { (/) }  ->  y  =  (/) )
2119, 20syl 15 . . . . . . . . . . . 12  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  =  (/) )
2221sseq1d 3218 . . . . . . . . . . 11  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  (
y  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  (/)  C_  U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
2317, 22mpbiri 224 . . . . . . . . . 10  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
2416, 23syl5ss 3203 . . . . . . . . 9  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
2524rgen 2621 . . . . . . . 8  |-  A. y  e.  ( B  i^i  { (/)
} ) ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y
) )
26 ralunb 3369 . . . . . . . 8  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( A. y  e.  ( B  i^i  { (/)
} ) ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y
) )  /\  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
2725, 26mpbiran 884 . . . . . . 7  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
28 inundif 3545 . . . . . . . 8  |-  ( ( B  i^i  { (/) } )  u.  ( B 
\  { (/) } ) )  =  B
2928raleqi 2753 . . . . . . 7  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3015, 27, 293bitr2i 264 . . . . . 6  |-  ( A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3130ralbii 2580 . . . . 5  |-  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  ( B  \  { (/) } ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
32 inss1 3402 . . . . . . . . 9  |-  ( x  i^i  y )  C_  x
3318sseli 3189 . . . . . . . . . . . 12  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  e.  { (/) } )
34 elsni 3677 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3533, 34syl 15 . . . . . . . . . . 11  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  =  (/) )
3635sseq1d 3218 . . . . . . . . . 10  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  (
x  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  (/)  C_  U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
3717, 36mpbiri 224 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
3832, 37syl5ss 3203 . . . . . . . 8  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
3938ralrimivw 2640 . . . . . . 7  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4039rgen 2621 . . . . . 6  |-  A. x  e.  ( B  i^i  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )
41 ralunb 3369 . . . . . 6  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( A. x  e.  ( B  i^i  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  /\  A. x  e.  ( B  \  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
4240, 41mpbiran 884 . . . . 5  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  ( B  \  { (/) } ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4328raleqi 2753 . . . . 5  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4431, 42, 433bitr2i 264 . . . 4  |-  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4544a1i 10 . . 3  |-  ( B  e.  _V  ->  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y )  C_  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
46 difexg 4178 . . . 4  |-  ( B  e.  _V  ->  ( B  \  { (/) } )  e.  _V )
47 isbasisg 16701 . . . 4  |-  ( ( B  \  { (/) } )  e.  _V  ->  ( ( B  \  { (/)
} )  e.  TopBases  <->  A. x  e.  ( B  \  { (/)
} ) A. y  e.  ( B  \  { (/)
} ) ( x  i^i  y )  C_  U. ( ( B  \  { (/) } )  i^i 
~P ( x  i^i  y ) ) ) )
4846, 47syl 15 . . 3  |-  ( B  e.  _V  ->  (
( B  \  { (/)
} )  e.  TopBases  <->  A. x  e.  ( B  \  { (/)
} ) A. y  e.  ( B  \  { (/)
} ) ( x  i^i  y )  C_  U. ( ( B  \  { (/) } )  i^i 
~P ( x  i^i  y ) ) ) )
49 isbasisg 16701 . . 3  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
5045, 48, 493bitr4d 276 . 2  |-  ( B  e.  _V  ->  (
( B  \  { (/)
} )  e.  TopBases  <->  B  e.  TopBases ) )
518, 9, 50pm5.21nii 342 1  |-  ( ( B  \  { (/) } )  e.  TopBases  <->  B  e.  TopBases )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   U.cuni 3843   TopBasesctb 16651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-sn 3659  df-pr 3660  df-uni 3844  df-bases 16654
  Copyright terms: Public domain W3C validator