MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basis1 Unicode version

Theorem basis1 16938
Description: Property of a basis. (Contributed by NM, 16-Jul-2006.)
Assertion
Ref Expression
basis1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )

Proof of Theorem basis1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisg 16935 . . . 4  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
21ibi 233 . . 3  |-  ( B  e.  TopBases  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3 ineq1 3478 . . . . 5  |-  ( x  =  C  ->  (
x  i^i  y )  =  ( C  i^i  y ) )
43pweqd 3747 . . . . . . 7  |-  ( x  =  C  ->  ~P ( x  i^i  y
)  =  ~P ( C  i^i  y ) )
54ineq2d 3485 . . . . . 6  |-  ( x  =  C  ->  ( B  i^i  ~P ( x  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  y
) ) )
65unieqd 3968 . . . . 5  |-  ( x  =  C  ->  U. ( B  i^i  ~P ( x  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  y ) ) )
73, 6sseq12d 3320 . . . 4  |-  ( x  =  C  ->  (
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) ) ) )
8 ineq2 3479 . . . . 5  |-  ( y  =  D  ->  ( C  i^i  y )  =  ( C  i^i  D
) )
98pweqd 3747 . . . . . . 7  |-  ( y  =  D  ->  ~P ( C  i^i  y
)  =  ~P ( C  i^i  D ) )
109ineq2d 3485 . . . . . 6  |-  ( y  =  D  ->  ( B  i^i  ~P ( C  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  D
) ) )
1110unieqd 3968 . . . . 5  |-  ( y  =  D  ->  U. ( B  i^i  ~P ( C  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  D ) ) )
128, 11sseq12d 3320 . . . 4  |-  ( y  =  D  ->  (
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) )  <-> 
( C  i^i  D
)  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
137, 12rspc2v 3001 . . 3  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
142, 13syl5com 28 . 2  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
15143impib 1151 1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649    i^i cin 3262    C_ wss 3263   ~Pcpw 3742   U.cuni 3957   TopBasesctb 16885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-rex 2655  df-v 2901  df-in 3270  df-ss 3277  df-pw 3744  df-uni 3958  df-bases 16888
  Copyright terms: Public domain W3C validator