MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basis2 Unicode version

Theorem basis2 16689
Description: Property of a basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
basis2  |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem basis2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasis2g 16686 . . . . 5  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) ) ) )
21ibi 232 . . . 4  |-  ( B  e.  TopBases  ->  A. y  e.  B  A. z  e.  B  A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) ) )
3 ineq1 3363 . . . . . . 7  |-  ( y  =  C  ->  (
y  i^i  z )  =  ( C  i^i  z ) )
4 sseq2 3200 . . . . . . . . . 10  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  (
x  C_  ( y  i^i  z )  <->  x  C_  ( C  i^i  z ) ) )
54anbi2d 684 . . . . . . . . 9  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  (
( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <-> 
( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
65rexbidv 2564 . . . . . . . 8  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  ( E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
76raleqbi1dv 2744 . . . . . . 7  |-  ( ( y  i^i  z )  =  ( C  i^i  z )  ->  ( A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
83, 7syl 15 . . . . . 6  |-  ( y  =  C  ->  ( A. w  e.  (
y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z ) )  <->  A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) ) ) )
9 ineq2 3364 . . . . . . 7  |-  ( z  =  D  ->  ( C  i^i  z )  =  ( C  i^i  D
) )
10 sseq2 3200 . . . . . . . . . 10  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( x  C_  ( C  i^i  z
)  <->  x  C_  ( C  i^i  D ) ) )
1110anbi2d 684 . . . . . . . . 9  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( (
w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  ( w  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
1211rexbidv 2564 . . . . . . . 8  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( E. x  e.  B  (
w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
1312raleqbi1dv 2744 . . . . . . 7  |-  ( ( C  i^i  z )  =  ( C  i^i  D )  ->  ( A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z
) )  <->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
149, 13syl 15 . . . . . 6  |-  ( z  =  D  ->  ( A. w  e.  ( C  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  z ) )  <->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
158, 14rspc2v 2890 . . . . 5  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) )  ->  A. w  e.  ( C  i^i  D
) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
16 eleq1 2343 . . . . . . . 8  |-  ( w  =  A  ->  (
w  e.  x  <->  A  e.  x ) )
1716anbi1d 685 . . . . . . 7  |-  ( w  =  A  ->  (
( w  e.  x  /\  x  C_  ( C  i^i  D ) )  <-> 
( A  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
1817rexbidv 2564 . . . . . 6  |-  ( w  =  A  ->  ( E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D ) )  <->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D ) ) ) )
1918rspccv 2881 . . . . 5  |-  ( A. w  e.  ( C  i^i  D ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( C  i^i  D
) )  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) )
2015, 19syl6com 31 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  A. w  e.  ( y  i^i  z ) E. x  e.  B  ( w  e.  x  /\  x  C_  ( y  i^i  z
) )  ->  (
( C  e.  B  /\  D  e.  B
)  ->  ( A  e.  ( C  i^i  D
)  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) )
212, 20syl 15 . . 3  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) )
2221exp3a 425 . 2  |-  ( B  e.  TopBases  ->  ( C  e.  B  ->  ( D  e.  B  ->  ( A  e.  ( C  i^i  D )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) ) ) ) )
2322imp43 578 1  |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   TopBasesctb 16635
This theorem is referenced by:  tgcl  16707  restbas  16889  txbas  17262  basqtop  17402  tgioo  18302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-pw 3627  df-uni 3828  df-bases 16638
  Copyright terms: Public domain W3C validator