MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop Unicode version

Theorem bastop 17009
Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
bastop  |-  ( B  e.  TopBases  ->  ( B  e. 
Top 
<->  ( topGen `  B )  =  B ) )

Proof of Theorem bastop
StepHypRef Expression
1 tgtop 17001 . 2  |-  ( B  e.  Top  ->  ( topGen `
 B )  =  B )
2 tgcl 16997 . . 3  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
3 eleq1 2472 . . 3  |-  ( (
topGen `  B )  =  B  ->  ( ( topGen `
 B )  e. 
Top 
<->  B  e.  Top )
)
42, 3syl5ibcom 212 . 2  |-  ( B  e.  TopBases  ->  ( ( topGen `  B )  =  B  ->  B  e.  Top ) )
51, 4impbid2 196 1  |-  ( B  e.  TopBases  ->  ( B  e. 
Top 
<->  ( topGen `  B )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   ` cfv 5421   topGenctg 13628   Topctop 16921   TopBasesctb 16925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-topgen 13630  df-top 16926  df-bases 16928
  Copyright terms: Public domain W3C validator