MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop2 Structured version   Unicode version

Theorem bastop2 17060
Description: A version of bastop1 17059 that doesn't have  B  C_  J in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Distinct variable groups:    x, y, B    x, J, y

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2497 . . . . . . . 8  |-  ( (
topGen `  B )  =  J  ->  ( ( topGen `
 B )  e. 
Top 
<->  J  e.  Top )
)
21biimparc 475 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  e. 
Top )
3 tgclb 17036 . . . . . . 7  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
42, 3sylibr 205 . . . . . 6  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  e. 
TopBases )
5 bastg 17032 . . . . . 6  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
64, 5syl 16 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  ( topGen `  B )
)
7 simpr 449 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  =  J )
86, 7sseqtrd 3385 . . . 4  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  J )
98ex 425 . . 3  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  ->  B  C_  J ) )
109pm4.71rd 618 . 2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  ( topGen `  B
)  =  J ) ) )
11 bastop1 17059 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1211pm5.32da 624 . 2  |-  ( J  e.  Top  ->  (
( B  C_  J  /\  ( topGen `  B )  =  J )  <->  ( B  C_  J  /\  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) ) )
1310, 12bitrd 246 1  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2706    C_ wss 3321   U.cuni 4016   ` cfv 5455   topGenctg 13666   Topctop 16959   TopBasesctb 16963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-iota 5419  df-fun 5457  df-fv 5463  df-topgen 13668  df-top 16964  df-bases 16966
  Copyright terms: Public domain W3C validator