MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop2 Unicode version

Theorem bastop2 16748
Description: A version of bastop1 16747 that doesn't have  B  C_  J in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Distinct variable groups:    x, y, B    x, J, y

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2356 . . . . . . . 8  |-  ( (
topGen `  B )  =  J  ->  ( ( topGen `
 B )  e. 
Top 
<->  J  e.  Top )
)
21biimparc 473 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  e. 
Top )
3 tgclb 16724 . . . . . . 7  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
42, 3sylibr 203 . . . . . 6  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  e. 
TopBases )
5 bastg 16720 . . . . . 6  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
64, 5syl 15 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  ( topGen `  B )
)
7 simpr 447 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  =  J )
86, 7sseqtrd 3227 . . . 4  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  J )
98ex 423 . . 3  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  ->  B  C_  J ) )
109pm4.71rd 616 . 2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  ( topGen `  B
)  =  J ) ) )
11 bastop1 16747 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1211pm5.32da 622 . 2  |-  ( J  e.  Top  ->  (
( B  C_  J  /\  ( topGen `  B )  =  J )  <->  ( B  C_  J  /\  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) ) )
1310, 12bitrd 244 1  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   U.cuni 3843   ` cfv 5271   topGenctg 13358   Topctop 16647   TopBasesctb 16651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-topgen 13360  df-top 16652  df-bases 16654
  Copyright terms: Public domain W3C validator