Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bclelnu Unicode version

Theorem bclelnu 25155
Description: The base class of an element of a nuple. (Contributed by FL, 19-Jun-2011.)
Hypothesis
Ref Expression
bcelnu.1  |-  ( x  =  I  ->  B  =  C )
Assertion
Ref Expression
bclelnu  |-  ( ( F  e.  X_ x  e.  A  B  /\  I  e.  A )  ->  ( F `  I
)  e.  C )
Distinct variable groups:    x, A    x, C    x, F    x, I
Allowed substitution hint:    B( x)

Proof of Theorem bclelnu
StepHypRef Expression
1 elixp2b 25154 . 2  |-  ( F  e.  X_ x  e.  A  B  ->  A. x  e.  A  ( F `  x )  e.  B )
2 fveq2 5525 . . . 4  |-  ( x  =  I  ->  ( F `  x )  =  ( F `  I ) )
3 bcelnu.1 . . . 4  |-  ( x  =  I  ->  B  =  C )
42, 3eleq12d 2351 . . 3  |-  ( x  =  I  ->  (
( F `  x
)  e.  B  <->  ( F `  I )  e.  C
) )
54rspccva 2883 . 2  |-  ( ( A. x  e.  A  ( F `  x )  e.  B  /\  I  e.  A )  ->  ( F `  I )  e.  C )
61, 5sylan 457 1  |-  ( ( F  e.  X_ x  e.  A  B  /\  I  e.  A )  ->  ( F `  I
)  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255   X_cixp 6817
This theorem is referenced by:  prmapcp2  25157  cbicp  25166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ixp 6818
  Copyright terms: Public domain W3C validator