MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Unicode version

Theorem bcm1k 11343
Description: The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 10817 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
2 nnuz 10279 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleqr 2387 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
43nnnn0d 10034 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN0 )
5 faccl 11314 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
64, 5syl 15 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  NN )
76nncnd 9778 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  CC )
8 fznn0sub 10840 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
9 nn0p1nn 10019 . . . . . . 7  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
108, 9syl 15 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
1110nncnd 9778 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  CC )
1210nnnn0d 10034 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN0 )
13 faccl 11314 . . . . . . . 8  |-  ( ( ( N  -  K
)  +  1 )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  e.  NN )
1412, 13syl 15 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  NN )
15 elfznn 10835 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
16 nnm1nn0 10021 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
17 faccl 11314 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1815, 16, 173syl 18 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1914, 18nnmulcld 9809 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN )
20 nncn 9770 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC )
21 nnne0 9794 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )
2220, 21jca 518 . . . . . 6  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2319, 22syl 15 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2415nncnd 9778 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
2515nnne0d 9806 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  =/=  0 )
2624, 25jca 518 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  CC  /\  K  =/=  0 ) )
27 divmuldiv 9476 . . . . 5  |-  ( ( ( ( ! `  N )  e.  CC  /\  ( ( N  -  K )  +  1 )  e.  CC )  /\  ( ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC  /\  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) ) )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
287, 11, 23, 26, 27syl22anc 1183 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
29 elfzel2 10812 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ZZ )
3029zcnd 10134 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
31 ax-1cn 8811 . . . . . . . . . 10  |-  1  e.  CC
3231a1i 10 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
3330, 24, 32subsubd 9201 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  -  K )  +  1 ) )
3433fveq2d 5545 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  ( K  - 
1 ) ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
3534oveq1d 5889 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )
3635oveq2d 5890 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  ( K  - 
1 ) ) )  x.  ( ! `  ( K  -  1
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) ) )
3733oveq1d 5889 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  -  K )  +  1 )  /  K ) )
3836, 37oveq12d 5892 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( ( N  -  K )  +  1 )  /  K
) ) )
39 facp1 11309 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
408, 39syl 15 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
4140eqcomd 2301 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
42 facnn2 11313 . . . . . . . 8  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4315, 42syl 15 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4441, 43oveq12d 5892 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 K ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
45 faccl 11314 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
468, 45syl 15 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
4746nncnd 9778 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
4815nnnn0d 10034 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN0 )
49 faccl 11314 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
5048, 49syl 15 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  NN )
5150nncnd 9778 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  CC )
5247, 51, 11mul32d 9038 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) )  x.  ( ! `  K
) ) )
5314nncnd 9778 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  CC )
5418nncnd 9778 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  CC )
5553, 54, 24mulassd 8874 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
5644, 52, 553eqtr4d 2338 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1
) ) )  x.  K ) )
5756oveq2d 5890 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
5828, 38, 573eqtr4d 2338 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  -  K
)  +  1 ) ) ) )
597, 11mulcomd 8872 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ! `  N
) ) )
6046, 50nnmulcld 9809 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
6160nncnd 9778 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
6261, 11mulcomd 8872 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6359, 62oveq12d 5892 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ( N  -  K
)  +  1 )  x.  ( ! `  N ) )  / 
( ( ( N  -  K )  +  1 )  x.  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ) )
6460nnne0d 9806 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =/=  0 )
6510nnne0d 9806 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  =/=  0 )
667, 61, 11, 64, 65divcan5d 9578 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  -  K )  +  1 )  x.  ( ! `  N )
)  /  ( ( ( N  -  K
)  +  1 )  x.  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6758, 63, 663eqtrrd 2333 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
68 0p1e1 9855 . . . . . 6  |-  ( 0  +  1 )  =  1
6968oveq1i 5884 . . . . 5  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
70 0z 10051 . . . . . 6  |-  0  e.  ZZ
71 fzp1ss 10853 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
7270, 71ax-mp 8 . . . . 5  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
7369, 72eqsstr3i 3222 . . . 4  |-  ( 1 ... N )  C_  ( 0 ... N
)
7473sseli 3189 . . 3  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
75 bcval2 11334 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
7674, 75syl 15 . 2  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
77 npcan 9076 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7830, 31, 77sylancl 643 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  =  N )
79 peano2zm 10078 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
8029, 79syl 15 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  1 )  e.  ZZ )
81 uzid 10258 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
82 peano2uz 10288 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8380, 81, 823syl 18 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8478, 83eqeltrrd 2371 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
85 fzss2 10847 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
8684, 85syl 15 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
87 elfzelz 10814 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
88 elfzm1b 10876 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
8987, 29, 88syl2anc 642 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... N )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) ) )
9089ibi 232 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
9186, 90sseldd 3194 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
92 bcval2 11334 . . . 4  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9391, 92syl 15 . . 3  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9493oveq1d 5889 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
9567, 76, 943eqtr4d 2338 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   !cfa 11304    _C cbc 11331
This theorem is referenced by:  bcp1nk  11345  bcpasc  11349  basellem5  20338  bpolydiflem  24861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-seq 11063  df-fac 11305  df-bc 11332
  Copyright terms: Public domain W3C validator