MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn1 Structured version   Unicode version

Theorem bcn1 11596
Description: Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 10215 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1nn0 10229 . . . . . . . 8  |-  1  e.  NN0
3 nn0uz 10512 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtri 2507 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
54a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ( ZZ>= `  0 )
)
6 elnnuz 10514 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
76biimpi 187 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
8 elfzuzb 11045 . . . . . 6  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  ( ZZ>= `  0
)  /\  N  e.  ( ZZ>= `  1 )
) )
95, 7, 8sylanbrc 646 . . . . 5  |-  ( N  e.  NN  ->  1  e.  ( 0 ... N
) )
10 bcval2 11588 . . . . 5  |-  ( 1  e.  ( 0 ... N )  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
119, 10syl 16 . . . 4  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
12 facnn2 11567 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
13 fac1 11562 . . . . . . 7  |-  ( ! `
 1 )  =  1
1413oveq2i 6084 . . . . . 6  |-  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) )  =  ( ( ! `  ( N  -  1
) )  x.  1 )
15 nnm1nn0 10253 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
16 faccl 11568 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  NN0  ->  ( ! `
 ( N  - 
1 ) )  e.  NN )
1715, 16syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  NN )
1817nncnd 10008 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  CC )
1918mulid1d 9097 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  1 )  =  ( ! `  ( N  -  1
) ) )
2014, 19syl5eq 2479 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) )  =  ( ! `  ( N  -  1
) ) )
2112, 20oveq12d 6091 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) ) )  =  ( ( ( ! `  ( N  -  1 ) )  x.  N )  / 
( ! `  ( N  -  1 ) ) ) )
22 nncn 10000 . . . . 5  |-  ( N  e.  NN  ->  N  e.  CC )
2317nnne0d 10036 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  =/=  0 )
2422, 18, 23divcan3d 9787 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  ( N  -  1
) )  x.  N
)  /  ( ! `
 ( N  - 
1 ) ) )  =  N )
2511, 21, 243eqtrd 2471 . . 3  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  N )
26 0nn0 10228 . . . . 5  |-  0  e.  NN0
27 1z 10303 . . . . 5  |-  1  e.  ZZ
28 0lt1 9542 . . . . . 6  |-  0  <  1
2928olci 381 . . . . 5  |-  ( 1  <  0  \/  0  <  1 )
30 bcval4 11590 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  ZZ  /\  (
1  <  0  \/  0  <  1 ) )  ->  ( 0  _C  1 )  =  0 )
3126, 27, 29, 30mp3an 1279 . . . 4  |-  ( 0  _C  1 )  =  0
32 oveq1 6080 . . . . 5  |-  ( N  =  0  ->  ( N  _C  1 )  =  ( 0  _C  1
) )
33 eqeq12 2447 . . . . 5  |-  ( ( ( N  _C  1
)  =  ( 0  _C  1 )  /\  N  =  0 )  ->  ( ( N  _C  1 )  =  N  <->  ( 0  _C  1 )  =  0 ) )
3432, 33mpancom 651 . . . 4  |-  ( N  =  0  ->  (
( N  _C  1
)  =  N  <->  ( 0  _C  1 )  =  0 ) )
3531, 34mpbiri 225 . . 3  |-  ( N  =  0  ->  ( N  _C  1 )  =  N )
3625, 35jaoi 369 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( N  _C  1 )  =  N )
371, 36sylbi 188 1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    - cmin 9283    / cdiv 9669   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   !cfa 11558    _C cbc 11585
This theorem is referenced by:  bcnp1n  11597  bcn2m1  11607  bcn2p1  11608  bcnm1  25193  bpoly2  26095  bpoly3  26096  bpoly4  26097  jm2.23  27058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-fac 11559  df-bc 11586
  Copyright terms: Public domain W3C validator