MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Unicode version

Theorem bcp1ctr 20534
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
2  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2cn 9832 . . . . . . . 8  |-  2  e.  CC
21mulid1i 8855 . . . . . . 7  |-  ( 2  x.  1 )  =  2
3 df-2 9820 . . . . . . 7  |-  2  =  ( 1  +  1 )
42, 3eqtri 2316 . . . . . 6  |-  ( 2  x.  1 )  =  ( 1  +  1 )
54oveq2i 5885 . . . . 5  |-  ( ( 2  x.  N )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) )
6 nn0cn 9991 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
7 ax-1cn 8811 . . . . . . 7  |-  1  e.  CC
8 adddi 8842 . . . . . . 7  |-  ( ( 2  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
91, 7, 8mp3an13 1268 . . . . . 6  |-  ( N  e.  CC  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
106, 9syl 15 . . . . 5  |-  ( N  e.  NN0  ->  ( 2  x.  ( N  + 
1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
11 2nn0 9998 . . . . . . . 8  |-  2  e.  NN0
12 nn0mulcl 10016 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  x.  N
)  e.  NN0 )
1311, 12mpan 651 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e. 
NN0 )
1413nn0cnd 10036 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e.  CC )
15 addass 8840 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
167, 7, 15mp3an23 1269 . . . . . 6  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
1714, 16syl 15 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
185, 10, 173eqtr4a 2354 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  +  1 ) )
1918oveq1d 5889 . . 3  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
20 peano2nn0 10020 . . . . 5  |-  ( ( 2  x.  N )  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e. 
NN0 )
2113, 20syl 15 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e. 
NN0 )
22 nn0p1nn 10019 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
2322nnzd 10132 . . . 4  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
24 bcpasc 11349 . . . 4  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  (
( N  +  1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
2521, 23, 24syl2anc 642 . . 3  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
2619, 25eqtr4d 2331 . 2  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  +  1 )  -  1 ) ) ) )
27 nn0z 10062 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
28 bccl 11350 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  NN0  /\  N  e.  ZZ )  ->  ( ( 2  x.  N )  _C  N
)  e.  NN0 )
2913, 27, 28syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  _C  N )  e. 
NN0 )
3029nn0cnd 10036 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  _C  N )  e.  CC )
311a1i 10 . . . . 5  |-  ( N  e.  NN0  ->  2  e.  CC )
3221nn0red 10035 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  RR )
3332, 22nndivred 9810 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  e.  RR )
3433recnd 8877 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  e.  CC )
3530, 31, 34mul12d 9037 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  _C  N
)  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )
367a1i 10 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  1  e.  CC )
3714, 36, 6addsubd 9194 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  N )  =  ( ( ( 2  x.  N )  -  N )  +  1 ) )
3862timesd 9970 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  x.  N )  =  ( N  +  N
) )
3938oveq1d 5889 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  -  N )  =  ( ( N  +  N )  -  N
) )
406, 6pncand 9174 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( N  +  N )  -  N )  =  N )
4139, 40eqtrd 2328 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  -  N )  =  N )
4241oveq1d 5889 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  -  N )  +  1 )  =  ( N  +  1 ) )
4337, 42eqtr2d 2329 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( ( 2  x.  N )  +  1 )  -  N
) )
4443oveq2d 5890 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  -  N ) ) )
4544oveq2d 5890 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  / 
( N  +  1 ) ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
( ( 2  x.  N )  +  1 )  /  ( ( ( 2  x.  N
)  +  1 )  -  N ) ) ) )
46 fzctr 10870 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
47 bcp1n 11344 . . . . . . 7  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( ( 2  x.  N )  +  1 )  _C  N )  =  ( ( ( 2  x.  N )  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  -  N ) ) ) )
4846, 47syl 15 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
( ( 2  x.  N )  +  1 )  /  ( ( ( 2  x.  N
)  +  1 )  -  N ) ) ) )
4945, 48eqtr4d 2331 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  / 
( N  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
5049oveq2d 5890 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( ( ( 2  x.  N )  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
5135, 50eqtrd 2328 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
52 bccmpl 11338 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) ) ) )
5321, 23, 52syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  (
( ( 2  x.  N )  +  1 )  -  ( N  +  1 ) ) ) )
5438oveq1d 5889 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  =  ( ( N  +  N )  +  1 ) )
556, 6, 36addassd 8873 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( N  +  N )  +  1 )  =  ( N  +  ( N  +  1 ) ) )
5654, 55eqtrd 2328 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  =  ( N  +  ( N  +  1 ) ) )
5756oveq1d 5889 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) )  =  ( ( N  +  ( N  +  1
) )  -  ( N  +  1 ) ) )
5822nncnd 9778 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
596, 58pncand 9174 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  ( N  +  1 ) )  -  ( N  + 
1 ) )  =  N )
6057, 59eqtrd 2328 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) )  =  N )
6160oveq2d 5890 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( ( ( 2  x.  N )  +  1 )  -  ( N  +  1
) ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
6253, 61eqtrd 2328 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
63 pncan 9073 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
646, 7, 63sylancl 643 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
6564oveq2d 5890 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( ( N  +  1 )  - 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
6662, 65oveq12d 5892 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  N )  +  ( ( ( 2  x.  N )  +  1 )  _C  N ) ) )
67 bccl 11350 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( 2  x.  N )  +  1 )  _C  N
)  e.  NN0 )
6821, 27, 67syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  e. 
NN0 )
6968nn0cnd 10036 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  e.  CC )
70692timesd 9970 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  _C  N ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  N )  +  ( ( ( 2  x.  N )  +  1 )  _C  N ) ) )
7166, 70eqtr4d 2331 . . 3  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
7251, 71eqtr4d 2331 . 2  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  +  1 )  -  1 ) ) ) )
7326, 72eqtr4d 2331 1  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
2  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   2c2 9811   NN0cn0 9981   ZZcz 10040   ...cfz 10798    _C cbc 11331
This theorem is referenced by:  bclbnd  20535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-seq 11063  df-fac 11305  df-bc 11332
  Copyright terms: Public domain W3C validator