MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Unicode version

Theorem bcp1ctr 20518
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
2  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2cn 9816 . . . . . . . 8  |-  2  e.  CC
21mulid1i 8839 . . . . . . 7  |-  ( 2  x.  1 )  =  2
3 df-2 9804 . . . . . . 7  |-  2  =  ( 1  +  1 )
42, 3eqtri 2303 . . . . . 6  |-  ( 2  x.  1 )  =  ( 1  +  1 )
54oveq2i 5869 . . . . 5  |-  ( ( 2  x.  N )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) )
6 nn0cn 9975 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
7 ax-1cn 8795 . . . . . . 7  |-  1  e.  CC
8 adddi 8826 . . . . . . 7  |-  ( ( 2  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
91, 7, 8mp3an13 1268 . . . . . 6  |-  ( N  e.  CC  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
106, 9syl 15 . . . . 5  |-  ( N  e.  NN0  ->  ( 2  x.  ( N  + 
1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
11 2nn0 9982 . . . . . . . 8  |-  2  e.  NN0
12 nn0mulcl 10000 . . . . . . . 8  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  x.  N
)  e.  NN0 )
1311, 12mpan 651 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e. 
NN0 )
1413nn0cnd 10020 . . . . . 6  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e.  CC )
15 addass 8824 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
167, 7, 15mp3an23 1269 . . . . . 6  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
1714, 16syl 15 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
185, 10, 173eqtr4a 2341 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  +  1 ) )
1918oveq1d 5873 . . 3  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
20 peano2nn0 10004 . . . . 5  |-  ( ( 2  x.  N )  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e. 
NN0 )
2113, 20syl 15 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e. 
NN0 )
22 nn0p1nn 10003 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
2322nnzd 10116 . . . 4  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
24 bcpasc 11333 . . . 4  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  (
( N  +  1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
2521, 23, 24syl2anc 642 . . 3  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  +  1 )  _C  ( N  +  1 ) ) )
2619, 25eqtr4d 2318 . 2  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  +  1 )  -  1 ) ) ) )
27 nn0z 10046 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
28 bccl 11334 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  NN0  /\  N  e.  ZZ )  ->  ( ( 2  x.  N )  _C  N
)  e.  NN0 )
2913, 27, 28syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  _C  N )  e. 
NN0 )
3029nn0cnd 10020 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  _C  N )  e.  CC )
311a1i 10 . . . . 5  |-  ( N  e.  NN0  ->  2  e.  CC )
3221nn0red 10019 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  RR )
3332, 22nndivred 9794 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  e.  RR )
3433recnd 8861 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  e.  CC )
3530, 31, 34mul12d 9021 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  _C  N
)  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )
367a1i 10 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  1  e.  CC )
3714, 36, 6addsubd 9178 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  N )  =  ( ( ( 2  x.  N )  -  N )  +  1 ) )
3862timesd 9954 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  x.  N )  =  ( N  +  N
) )
3938oveq1d 5873 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  -  N )  =  ( ( N  +  N )  -  N
) )
406, 6pncand 9158 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( N  +  N )  -  N )  =  N )
4139, 40eqtrd 2315 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  -  N )  =  N )
4241oveq1d 5873 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  -  N )  +  1 )  =  ( N  +  1 ) )
4337, 42eqtr2d 2316 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  +  1 )  =  ( ( ( 2  x.  N )  +  1 )  -  N
) )
4443oveq2d 5874 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  -  N ) ) )
4544oveq2d 5874 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  / 
( N  +  1 ) ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
( ( 2  x.  N )  +  1 )  /  ( ( ( 2  x.  N
)  +  1 )  -  N ) ) ) )
46 fzctr 10854 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
47 bcp1n 11328 . . . . . . 7  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( ( 2  x.  N )  +  1 )  _C  N )  =  ( ( ( 2  x.  N )  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  -  N ) ) ) )
4846, 47syl 15 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
( ( 2  x.  N )  +  1 )  /  ( ( ( 2  x.  N
)  +  1 )  -  N ) ) ) )
4945, 48eqtr4d 2318 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  / 
( N  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
5049oveq2d 5874 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( ( ( 2  x.  N )  _C  N )  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
5135, 50eqtrd 2315 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
52 bccmpl 11322 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  ( N  +  1
)  e.  ZZ )  ->  ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) ) ) )
5321, 23, 52syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  (
( ( 2  x.  N )  +  1 )  -  ( N  +  1 ) ) ) )
5438oveq1d 5873 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  =  ( ( N  +  N )  +  1 ) )
556, 6, 36addassd 8857 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( N  +  N )  +  1 )  =  ( N  +  ( N  +  1 ) ) )
5654, 55eqtrd 2315 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  =  ( N  +  ( N  +  1 ) ) )
5756oveq1d 5873 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) )  =  ( ( N  +  ( N  +  1
) )  -  ( N  +  1 ) ) )
5822nncnd 9762 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
596, 58pncand 9158 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  ( N  +  1 ) )  -  ( N  + 
1 ) )  =  N )
6057, 59eqtrd 2315 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  -  ( N  + 
1 ) )  =  N )
6160oveq2d 5874 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( ( ( 2  x.  N )  +  1 )  -  ( N  +  1
) ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
6253, 61eqtrd 2315 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
63 pncan 9057 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
646, 7, 63sylancl 643 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
6564oveq2d 5874 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  ( ( N  +  1 )  - 
1 ) )  =  ( ( ( 2  x.  N )  +  1 )  _C  N
) )
6662, 65oveq12d 5876 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  N )  +  ( ( ( 2  x.  N )  +  1 )  _C  N ) ) )
67 bccl 11334 . . . . . . 7  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( 2  x.  N )  +  1 )  _C  N
)  e.  NN0 )
6821, 27, 67syl2anc 642 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  e. 
NN0 )
6968nn0cnd 10020 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  _C  N )  e.  CC )
70692timesd 9954 . . . 4  |-  ( N  e.  NN0  ->  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  _C  N ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  N )  +  ( ( ( 2  x.  N )  +  1 )  _C  N ) ) )
7166, 70eqtr4d 2318 . . 3  |-  ( N  e.  NN0  ->  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  + 
1 )  -  1 ) ) )  =  ( 2  x.  (
( ( 2  x.  N )  +  1 )  _C  N ) ) )
7251, 71eqtr4d 2318 . 2  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  _C  N )  x.  ( 2  x.  ( ( ( 2  x.  N )  +  1 )  /  ( N  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  _C  ( N  +  1 ) )  +  ( ( ( 2  x.  N )  +  1 )  _C  ( ( N  +  1 )  -  1 ) ) ) )
7326, 72eqtr4d 2318 1  |-  ( N  e.  NN0  ->  ( ( 2  x.  ( N  +  1 ) )  _C  ( N  + 
1 ) )  =  ( ( ( 2  x.  N )  _C  N )  x.  (
2  x.  ( ( ( 2  x.  N
)  +  1 )  /  ( N  + 
1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037    / cdiv 9423   2c2 9795   NN0cn0 9965   ZZcz 10024   ...cfz 10782    _C cbc 11315
This theorem is referenced by:  bclbnd  20519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-fac 11289  df-bc 11316
  Copyright terms: Public domain W3C validator