HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Unicode version

Theorem bcsiALT 21774
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
bcs.1  |-  A  e. 
~H
bcs.2  |-  B  e. 
~H
Assertion
Ref Expression
bcsiALT  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 5541 . . 3  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  =  ( abs `  0 ) )
2 abs0 11786 . . . 4  |-  ( abs `  0 )  =  0
3 bcs.1 . . . . . 6  |-  A  e. 
~H
4 normge0 21721 . . . . . 6  |-  ( A  e.  ~H  ->  0  <_  ( normh `  A )
)
53, 4ax-mp 8 . . . . 5  |-  0  <_  ( normh `  A )
6 bcs.2 . . . . . 6  |-  B  e. 
~H
7 normge0 21721 . . . . . 6  |-  ( B  e.  ~H  ->  0  <_  ( normh `  B )
)
86, 7ax-mp 8 . . . . 5  |-  0  <_  ( normh `  B )
93normcli 21726 . . . . . 6  |-  ( normh `  A )  e.  RR
106normcli 21726 . . . . . 6  |-  ( normh `  B )  e.  RR
119, 10mulge0i 9336 . . . . 5  |-  ( ( 0  <_  ( normh `  A )  /\  0  <_  ( normh `  B )
)  ->  0  <_  ( ( normh `  A )  x.  ( normh `  B )
) )
125, 8, 11mp2an 653 . . . 4  |-  0  <_  ( ( normh `  A
)  x.  ( normh `  B ) )
132, 12eqbrtri 4058 . . 3  |-  ( abs `  0 )  <_ 
( ( normh `  A
)  x.  ( normh `  B ) )
141, 13syl6eqbr 4076 . 2  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  <_  (
( normh `  A )  x.  ( normh `  B )
) )
15 df-ne 2461 . . . 4  |-  ( ( A  .ih  B )  =/=  0  <->  -.  ( A  .ih  B )  =  0 )
166, 3his1i 21695 . . . . . . . 8  |-  ( B 
.ih  A )  =  ( * `  ( A  .ih  B ) )
1716oveq2i 5885 . . . . . . 7  |-  ( ( ( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) )  =  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) )
1817oveq2i 5885 . . . . . 6  |-  ( ( ( * `  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )
193, 6hicli 21676 . . . . . . 7  |-  ( A 
.ih  B )  e.  CC
20 abslem2 11839 . . . . . . 7  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B ) ) ) )
2119, 20mpan 651 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B
) ) ) )
2218, 21syl5req 2341 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) ) )
2319abs00i 11897 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =  0  <->  ( A  .ih  B )  =  0 )
2423necon3bii 2491 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  ( A  .ih  B )  =/=  0
)
2519abscli 11894 . . . . . . . . . 10  |-  ( abs `  ( A  .ih  B
) )  e.  RR
2625recni 8865 . . . . . . . . 9  |-  ( abs `  ( A  .ih  B
) )  e.  CC
2719, 26divclzi 9511 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
2819, 26divreczi 9514 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  =  ( ( A  .ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )
2928fveq2d 5545 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( abs `  ( ( A  .ih  B )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) ) )
3026recclzi 9501 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
31 absmul 11795 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  CC )  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3219, 30, 31sylancr 644 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3325rerecclzi 9540 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  RR )
34 0re 8854 . . . . . . . . . . . . . 14  |-  0  e.  RR
3533, 34jctil 523 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR ) )
3619absgt0i 11898 . . . . . . . . . . . . . . 15  |-  ( ( A  .ih  B )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3724, 36bitri 240 . . . . . . . . . . . . . 14  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3825recgt0i 9677 . . . . . . . . . . . . . 14  |-  ( 0  <  ( abs `  ( A  .ih  B ) )  ->  0  <  (
1  /  ( abs `  ( A  .ih  B
) ) ) )
3937, 38sylbi 187 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
40 ltle 8926 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR )  ->  (
0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) )  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B
) ) ) ) )
4135, 39, 40sylc 56 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
4233, 41absidd 11921 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( 1  /  ( abs `  ( A  .ih  B
) ) ) )
4342oveq2d 5890 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4432, 43eqtrd 2328 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4526recidzi 9503 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4629, 44, 453eqtrd 2332 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4727, 46jca 518 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
4824, 47sylbir 204 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
493, 6normlem7tALT 21714 . . . . . 6  |-  ( ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5048, 49syl 15 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5122, 50eqbrtrd 4059 . . . 4  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5215, 51sylbir 204 . . 3  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5310recni 8865 . . . . . 6  |-  ( normh `  B )  e.  CC
549recni 8865 . . . . . 6  |-  ( normh `  A )  e.  CC
55 normval 21719 . . . . . . . 8  |-  ( B  e.  ~H  ->  ( normh `  B )  =  ( sqr `  ( B  .ih  B ) ) )
566, 55ax-mp 8 . . . . . . 7  |-  ( normh `  B )  =  ( sqr `  ( B 
.ih  B ) )
57 normval 21719 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )
583, 57ax-mp 8 . . . . . . 7  |-  ( normh `  A )  =  ( sqr `  ( A 
.ih  A ) )
5956, 58oveq12i 5886 . . . . . 6  |-  ( (
normh `  B )  x.  ( normh `  A )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6053, 54, 59mulcomli 8860 . . . . 5  |-  ( (
normh `  A )  x.  ( normh `  B )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6160breq2i 4047 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) )
62 2pos 9844 . . . . 5  |-  0  <  2
63 hiidge0 21693 . . . . . . . 8  |-  ( B  e.  ~H  ->  0  <_  ( B  .ih  B
) )
64 hiidrcl 21690 . . . . . . . . . 10  |-  ( B  e.  ~H  ->  ( B  .ih  B )  e.  RR )
656, 64ax-mp 8 . . . . . . . . 9  |-  ( B 
.ih  B )  e.  RR
6665sqrcli 11871 . . . . . . . 8  |-  ( 0  <_  ( B  .ih  B )  ->  ( sqr `  ( B  .ih  B
) )  e.  RR )
676, 63, 66mp2b 9 . . . . . . 7  |-  ( sqr `  ( B  .ih  B
) )  e.  RR
68 hiidge0 21693 . . . . . . . 8  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
69 hiidrcl 21690 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
703, 69ax-mp 8 . . . . . . . . 9  |-  ( A 
.ih  A )  e.  RR
7170sqrcli 11871 . . . . . . . 8  |-  ( 0  <_  ( A  .ih  A )  ->  ( sqr `  ( A  .ih  A
) )  e.  RR )
723, 68, 71mp2b 9 . . . . . . 7  |-  ( sqr `  ( A  .ih  A
) )  e.  RR
7367, 72remulcli 8867 . . . . . 6  |-  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )  e.  RR
74 2re 9831 . . . . . 6  |-  2  e.  RR
7525, 73, 74lemul2i 9696 . . . . 5  |-  ( 0  <  2  ->  (
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) ) )
7662, 75ax-mp 8 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7761, 76bitri 240 . . 3  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7852, 77sylibr 203 . 2  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( abs `  ( A  .ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) ) )
7914, 78pm2.61i 156 1  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   *ccj 11597   sqrcsqr 11734   abscabs 11735   ~Hchil 21515    .ih csp 21518   normhcno 21519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-hfvadd 21596  ax-hv0cl 21599  ax-hfvmul 21601  ax-hvmulass 21603  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his2 21678  ax-his3 21679  ax-his4 21680
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-hnorm 21564  df-hvsub 21567
  Copyright terms: Public domain W3C validator